File size: 9,558 Bytes
262b155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Authors: Hui Ren (rhfeiyang.github.io)
import random

import torch.utils.data as data
from PIL import Image
import os
import torch
# from tqdm import tqdm
class ImageSet(data.Dataset):
    def __init__(self, folder , transform=None, keep_in_mem=True, caption=None):
        self.path = folder
        self.transform = transform
        self.caption_path = None
        self.images = []
        self.captions = []
        self.keep_in_mem = keep_in_mem

        if not isinstance(folder, list):
            self.image_files = [file for file in os.listdir(folder) if file.endswith((".png",".jpg"))]
            self.image_files.sort()
        else:
            self.images = folder

        if not isinstance(caption, list):
            if caption not in [None, "", "None"]:
                self.caption_path = caption
                self.caption_files = [os.path.join(caption, file.replace(".png", ".txt").replace(".jpg", ".txt")) for file in self.image_files]
                self.caption_files.sort()
        else:
            self.caption_path = True
            self.captions = caption
        # get all the image files png/jpg


        if keep_in_mem:
            if len(self.images) == 0:
                for file in self.image_files:
                    img = self.load_image(os.path.join(self.path, file))
                    self.images.append(img)
            if len(self.captions) == 0:
                if self.caption_path is not None:
                    self.captions = []
                    for file in self.caption_files:
                        caption = self.load_caption(file)
                        self.captions.append(caption)
        else:
            self.images = None

    def limit_num(self, n):
        raise NotImplementedError
        assert n <= len(self), f"n should be less than the length of the dataset {len(self)}"
        self.image_files = self.image_files[:n]
        self.caption_files = self.caption_files[:n]
        if self.keep_in_mem:
            self.images = self.images[:n]
            self.captions = self.captions[:n]
        print(f"Dataset limited to {n}")

    def __len__(self):
        if len(self.images) != 0:
            return len(self.images)
        else:
            return len(self.image_files)

    def load_image(self, path):
        with open(path, 'rb') as f:
            img = Image.open(f).convert('RGB')
        return img

    def load_caption(self, path):
        with open(path, 'r') as f:
            caption = f.readlines()
        caption = [line.strip() for line in caption if len(line.strip()) > 0]
        return caption

    def __getitem__(self, index):
        if len(self.images) != 0:
            img = self.images[index]
        else:
            img = self.load_image(os.path.join(self.path, self.image_files[index]))

        # if self.transform is not None:
        #     img = self.transform(img)

        if self.caption_path is not None or len(self.captions) != 0:
            if len(self.captions) != 0:
                caption = self.captions[index]
            else:
                caption = self.load_caption(self.caption_files[index])
            ret= {"image": img, "caption": caption, "id": index}
        else:
            ret= {"image": img, "id": index}
        if self.transform is not None:
            ret = self.transform(ret)
        return ret

    def subsample(self, n: int = 10):
        if n is None or n == -1:
            return self
        ori_len = len(self)
        assert n <= ori_len
        # equal interval subsample
        ids = self.image_files[::ori_len // n][:n]
        self.image_files = ids
        if self.keep_in_mem:
            self.images = self.images[::ori_len // n][:n]
        print(f"Dataset subsampled from {ori_len} to {len(self)}")
        return self

    def with_transform(self, transform):
        self.transform = transform
        return self
    @staticmethod
    def collate_fn(examples):
        images = [example["image"] for example in examples]
        ids = [example["id"] for example in examples]
        if "caption" in examples[0]:
            captions = [random.choice(example["caption"]) for example in examples]
            return {"images": images, "captions": captions, "id": ids}
        else:
            return {"images": images, "id": ids}


class ImagePair(ImageSet):
    def __init__(self, folder1, folder2, transform=None, keep_in_mem=True):
        self.path1 = folder1
        self.path2 = folder2
        self.transform = transform
        # get all the image files png/jpg
        self.image_files = [file for file in os.listdir(folder1) if file.endswith(".png") or file.endswith(".jpg")]
        self.image_files.sort()
        self.keep_in_mem = keep_in_mem
        if keep_in_mem:
            self.images = []
            for file in self.image_files:
                img1 = self.load_image(os.path.join(self.path1, file))
                img2 = self.load_image(os.path.join(self.path2, file))
                self.images.append((img1, img2))
        else:
            self.images = None

    def __getitem__(self, index):
        if self.keep_in_mem:
            img1, img2 = self.images[index]
        else:
            img1 = self.load_image(os.path.join(self.path1, self.image_files[index]))
            img2 = self.load_image(os.path.join(self.path2, self.image_files[index]))

        if self.transform is not None:
            img1 = self.transform(img1)
            img2 = self.transform(img2)
        return {"image1": img1, "image2": img2, "id": index}



    @staticmethod
    def collate_fn(examples):
        images1 = [example["image1"] for example in examples]
        images2 = [example["image2"] for example in examples]
        # images1 = torch.stack(images1)
        # images2 = torch.stack(images2)
        ids = [example["id"] for example in examples]
        return {"image1": images1, "image2": images2, "id": ids}

    def push_to_huggingface(self, hug_folder):
        from datasets import Dataset
        from datasets import Image as HugImage
        photo_path = [os.path.join(self.path1, file) for file in self.image_files]
        sketch_path = [os.path.join(self.path2, file) for file in self.image_files]
        dataset = Dataset.from_dict({"photo": photo_path, "sketch": sketch_path, "file_name": self.image_files})
        dataset = dataset.cast_column("photo", HugImage())
        dataset = dataset.cast_column("sketch", HugImage())
        dataset.push_to_hub(hug_folder, private=True)

class ImageClass(ImageSet):
    def __init__(self, folders: list, transform=None, keep_in_mem=True):
        self.paths = folders
        self.transform = transform
        # get all the image files png/jpg
        self.image_files = []
        self.keep_in_mem = keep_in_mem
        for i, folder in enumerate(folders):
            self.image_files+=[(os.path.join(folder, file), i) for file in os.listdir(folder) if file.endswith(".png") or file.endswith(".jpg")]
        if keep_in_mem:
            self.images = []
            print("Loading images to memory")
            for file in self.image_files:
                img = self.load_image(file[0])
                self.images.append((img, file[1]))
            print("Loading images to memory done")
        else:
            self.images = None

    def __getitem__(self, index):
        if self.keep_in_mem:
            img, label = self.images[index]
        else:
            img_path, label = self.image_files[index]
            img = self.load_image(img_path)

        if self.transform is not None:
            img = self.transform(img)
        return {"image": img, "label": label, "id": index}

    @staticmethod
    def collate_fn(examples):
        images = [example["image"] for example in examples]
        labels = [example["label"] for example in examples]
        ids = [example["id"] for example in examples]
        return {"images": images, "labels":labels, "id": ids}


if __name__ == "__main__":
    # dataset = ImagePair("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_50",
    #                     "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/sketch_50",keep_in_mem=False)
    # dataset.push_to_huggingface("rhfeiyang/photo-sketch-pair-50")



    dataset = ImagePair("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_500",
                        "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/sketch_500",
                        keep_in_mem=True)
    # dataset.push_to_huggingface("rhfeiyang/photo-sketch-pair-500")
    # ret = dataset[0]
    # print(len(dataset))
    import torch
    from torchvision import transforms
    train_transforms = transforms.Compose(
        [
            transforms.Resize(256, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.CenterCrop(256),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ]
    )
    dataset = dataset.with_transform(train_transforms)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=True, num_workers=4, collate_fn=ImagePair.collate_fn)
    ret = dataloader.__iter__().__next__()
    pass