Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,558 Bytes
262b155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# Authors: Hui Ren (rhfeiyang.github.io)
import random
import torch.utils.data as data
from PIL import Image
import os
import torch
# from tqdm import tqdm
class ImageSet(data.Dataset):
def __init__(self, folder , transform=None, keep_in_mem=True, caption=None):
self.path = folder
self.transform = transform
self.caption_path = None
self.images = []
self.captions = []
self.keep_in_mem = keep_in_mem
if not isinstance(folder, list):
self.image_files = [file for file in os.listdir(folder) if file.endswith((".png",".jpg"))]
self.image_files.sort()
else:
self.images = folder
if not isinstance(caption, list):
if caption not in [None, "", "None"]:
self.caption_path = caption
self.caption_files = [os.path.join(caption, file.replace(".png", ".txt").replace(".jpg", ".txt")) for file in self.image_files]
self.caption_files.sort()
else:
self.caption_path = True
self.captions = caption
# get all the image files png/jpg
if keep_in_mem:
if len(self.images) == 0:
for file in self.image_files:
img = self.load_image(os.path.join(self.path, file))
self.images.append(img)
if len(self.captions) == 0:
if self.caption_path is not None:
self.captions = []
for file in self.caption_files:
caption = self.load_caption(file)
self.captions.append(caption)
else:
self.images = None
def limit_num(self, n):
raise NotImplementedError
assert n <= len(self), f"n should be less than the length of the dataset {len(self)}"
self.image_files = self.image_files[:n]
self.caption_files = self.caption_files[:n]
if self.keep_in_mem:
self.images = self.images[:n]
self.captions = self.captions[:n]
print(f"Dataset limited to {n}")
def __len__(self):
if len(self.images) != 0:
return len(self.images)
else:
return len(self.image_files)
def load_image(self, path):
with open(path, 'rb') as f:
img = Image.open(f).convert('RGB')
return img
def load_caption(self, path):
with open(path, 'r') as f:
caption = f.readlines()
caption = [line.strip() for line in caption if len(line.strip()) > 0]
return caption
def __getitem__(self, index):
if len(self.images) != 0:
img = self.images[index]
else:
img = self.load_image(os.path.join(self.path, self.image_files[index]))
# if self.transform is not None:
# img = self.transform(img)
if self.caption_path is not None or len(self.captions) != 0:
if len(self.captions) != 0:
caption = self.captions[index]
else:
caption = self.load_caption(self.caption_files[index])
ret= {"image": img, "caption": caption, "id": index}
else:
ret= {"image": img, "id": index}
if self.transform is not None:
ret = self.transform(ret)
return ret
def subsample(self, n: int = 10):
if n is None or n == -1:
return self
ori_len = len(self)
assert n <= ori_len
# equal interval subsample
ids = self.image_files[::ori_len // n][:n]
self.image_files = ids
if self.keep_in_mem:
self.images = self.images[::ori_len // n][:n]
print(f"Dataset subsampled from {ori_len} to {len(self)}")
return self
def with_transform(self, transform):
self.transform = transform
return self
@staticmethod
def collate_fn(examples):
images = [example["image"] for example in examples]
ids = [example["id"] for example in examples]
if "caption" in examples[0]:
captions = [random.choice(example["caption"]) for example in examples]
return {"images": images, "captions": captions, "id": ids}
else:
return {"images": images, "id": ids}
class ImagePair(ImageSet):
def __init__(self, folder1, folder2, transform=None, keep_in_mem=True):
self.path1 = folder1
self.path2 = folder2
self.transform = transform
# get all the image files png/jpg
self.image_files = [file for file in os.listdir(folder1) if file.endswith(".png") or file.endswith(".jpg")]
self.image_files.sort()
self.keep_in_mem = keep_in_mem
if keep_in_mem:
self.images = []
for file in self.image_files:
img1 = self.load_image(os.path.join(self.path1, file))
img2 = self.load_image(os.path.join(self.path2, file))
self.images.append((img1, img2))
else:
self.images = None
def __getitem__(self, index):
if self.keep_in_mem:
img1, img2 = self.images[index]
else:
img1 = self.load_image(os.path.join(self.path1, self.image_files[index]))
img2 = self.load_image(os.path.join(self.path2, self.image_files[index]))
if self.transform is not None:
img1 = self.transform(img1)
img2 = self.transform(img2)
return {"image1": img1, "image2": img2, "id": index}
@staticmethod
def collate_fn(examples):
images1 = [example["image1"] for example in examples]
images2 = [example["image2"] for example in examples]
# images1 = torch.stack(images1)
# images2 = torch.stack(images2)
ids = [example["id"] for example in examples]
return {"image1": images1, "image2": images2, "id": ids}
def push_to_huggingface(self, hug_folder):
from datasets import Dataset
from datasets import Image as HugImage
photo_path = [os.path.join(self.path1, file) for file in self.image_files]
sketch_path = [os.path.join(self.path2, file) for file in self.image_files]
dataset = Dataset.from_dict({"photo": photo_path, "sketch": sketch_path, "file_name": self.image_files})
dataset = dataset.cast_column("photo", HugImage())
dataset = dataset.cast_column("sketch", HugImage())
dataset.push_to_hub(hug_folder, private=True)
class ImageClass(ImageSet):
def __init__(self, folders: list, transform=None, keep_in_mem=True):
self.paths = folders
self.transform = transform
# get all the image files png/jpg
self.image_files = []
self.keep_in_mem = keep_in_mem
for i, folder in enumerate(folders):
self.image_files+=[(os.path.join(folder, file), i) for file in os.listdir(folder) if file.endswith(".png") or file.endswith(".jpg")]
if keep_in_mem:
self.images = []
print("Loading images to memory")
for file in self.image_files:
img = self.load_image(file[0])
self.images.append((img, file[1]))
print("Loading images to memory done")
else:
self.images = None
def __getitem__(self, index):
if self.keep_in_mem:
img, label = self.images[index]
else:
img_path, label = self.image_files[index]
img = self.load_image(img_path)
if self.transform is not None:
img = self.transform(img)
return {"image": img, "label": label, "id": index}
@staticmethod
def collate_fn(examples):
images = [example["image"] for example in examples]
labels = [example["label"] for example in examples]
ids = [example["id"] for example in examples]
return {"images": images, "labels":labels, "id": ids}
if __name__ == "__main__":
# dataset = ImagePair("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_50",
# "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/sketch_50",keep_in_mem=False)
# dataset.push_to_huggingface("rhfeiyang/photo-sketch-pair-50")
dataset = ImagePair("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_500",
"/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/sketch_500",
keep_in_mem=True)
# dataset.push_to_huggingface("rhfeiyang/photo-sketch-pair-500")
# ret = dataset[0]
# print(len(dataset))
import torch
from torchvision import transforms
train_transforms = transforms.Compose(
[
transforms.Resize(256, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(256),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
dataset = dataset.with_transform(train_transforms)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=True, num_workers=4, collate_fn=ImagePair.collate_fn)
ret = dataloader.__iter__().__next__()
pass |