File size: 11,651 Bytes
c2786e2
 
 
 
 
 
 
 
 
 
 
d4fbe32
c2786e2
d4fbe32
c2786e2
 
 
 
fb8d464
 
 
c2786e2
fb8d464
 
 
c2786e2
fb8d464
c2786e2
 
fb8d464
c2786e2
fb8d464
c2786e2
fb8d464
c2786e2
 
fb8d464
c2786e2
fb8d464
c2786e2
 
 
d7b9e64
 
 
fb8d464
d4fbe32
0026aa2
d7b9e64
c2786e2
fb8d464
c2786e2
d7b9e64
acb4c4f
c2786e2
fb8d464
c2786e2
fb8d464
 
 
 
 
 
c2786e2
fb8d464
 
 
 
c2786e2
 
fb8d464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acb4c4f
fb8d464
c2786e2
 
 
 
 
 
 
 
 
d9e6174
c2786e2
 
80b528e
8cdc5c2
80b528e
fb8d464
8cdc5c2
c2786e2
 
fb8d464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cdc5c2
fb8d464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cdc5c2
 
c2786e2
 
fb8d464
 
 
 
 
 
 
c2786e2
d9e6174
fb8d464
 
 
 
 
 
 
 
c2786e2
 
fb8d464
c2786e2
80b528e
fb8d464
 
 
c2786e2
 
fb8d464
 
c2786e2
fb8d464
 
c2786e2
178d1a7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Authors: Hui Ren (rhfeiyang.github.io)
import spaces
import os
import gradio as gr
from diffusers import DiffusionPipeline
import matplotlib.pyplot as plt
import torch
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16
print(f"Using {device} device, dtype={dtype}")
pipe = DiffusionPipeline.from_pretrained("rhfeiyang/art-free-diffusion-v1",
                                         torch_dtype=dtype).to(device)

from inference import get_lora_network, inference, get_validation_dataloader
lora_map = {
    "None": "None",
    "Andre Derain (fauvism)": "andre-derain_subset1",
    "Vincent van Gogh (post impressionism)": "van_gogh_subset1",
    "Andy Warhol (pop art)": "andy_subset1",
    "Walter Battiss": "walter-battiss_subset2",
    "Camille Corot (realism)": "camille-corot_subset1",
    "Claude Monet (impressionism)": "monet_subset2",
    "Pablo Picasso (cubism)": "picasso_subset1",
    "Jackson Pollock": "jackson-pollock_subset1",
    "Gerhard Richter (abstract expressionism)": "gerhard-richter_subset1",
    "M.C. Escher": "m.c.-escher_subset1",
    "Albert Gleizes": "albert-gleizes_subset1",
    "Hokusai (ukiyo-e)": "katsushika-hokusai_subset1",
    "Wassily Kandinsky": "kandinsky_subset1",
    "Gustav Klimt (art nouveau)": "klimt_subset3",
    "Roy Lichtenstein": "roy-lichtenstein_subset1",
    "Henri Matisse (abstract expressionism)": "henri-matisse_subset1",
    "Joan Miro": "joan-miro_subset2",
}

@spaces.GPU
def demo_inference_gen_artistic(adapter_choice:str, prompt:str, seed:int=0, steps=50, guidance_scale=7.5, adapter_scale=1.0):
    adapter_path = lora_map[adapter_choice]
    if adapter_path not in [None, "None"]:
        adapter_path = f"data/Art_adapters/{adapter_path}/adapter_alpha1.0_rank1_all_up_1000steps.pt"
        style_prompt="sks art"
    else:
        style_prompt=None
    prompts = [prompt]
    infer_loader = get_validation_dataloader(prompts,num_workers=0)
    network = get_lora_network(pipe.unet, adapter_path, weight_dtype=dtype)["network"]

    pred_images = inference(network, pipe.tokenizer, pipe.text_encoder, pipe.vae, pipe.unet, pipe.scheduler, infer_loader,
                            height=512, width=512, scales=[adapter_scale],
                            save_dir=None, seed=seed,steps=steps, guidance_scale=guidance_scale,
                            start_noise=-1, show=False, style_prompt=style_prompt, no_load=True,
                            from_scratch=True, device=device, weight_dtype=dtype)[0][adapter_scale][0]
    return pred_images

@spaces.GPU
def demo_inference_gen_ori( prompt:str, seed:int=0, steps=50, guidance_scale=7.5):
    style_prompt=None
    prompts = [prompt]
    infer_loader = get_validation_dataloader(prompts,num_workers=0)
    network = get_lora_network(pipe.unet, "None", weight_dtype=dtype)["network"]

    pred_images = inference(network, pipe.tokenizer, pipe.text_encoder, pipe.vae, pipe.unet, pipe.scheduler, infer_loader,
                            height=512, width=512, scales=[0.0],
                            save_dir=None, seed=seed,steps=steps, guidance_scale=guidance_scale,
                            start_noise=-1, show=False, style_prompt=style_prompt, no_load=True,
                            from_scratch=True, device=device, weight_dtype=dtype)[0][0.0][0]
    return pred_images


@spaces.GPU
def demo_inference_stylization_ori(ref_image, prompt:str, seed:int=0, steps=50, guidance_scale=7.5, start_noise=800):
    style_prompt=None
    prompts = [prompt]
    # convert np to pil
    ref_image = [Image.fromarray(ref_image)]
    network = get_lora_network(pipe.unet, "None", weight_dtype=dtype)["network"]
    infer_loader = get_validation_dataloader(prompts, ref_image,num_workers=0)
    pred_images = inference(network, pipe.tokenizer, pipe.text_encoder, pipe.vae, pipe.unet, pipe.scheduler, infer_loader,
                            height=512, width=512, scales=[0.0],
                            save_dir=None, seed=seed,steps=steps, guidance_scale=guidance_scale,
                            start_noise=start_noise, show=False, style_prompt=style_prompt, no_load=True,
                            from_scratch=False, device=device, weight_dtype=dtype)[0][0.0][0]
    return pred_images

@spaces.GPU
def demo_inference_stylization_artistic(ref_image, adapter_choice:str, prompt:str, seed:int=0, steps=50, guidance_scale=7.5, adapter_scale=1.0,start_noise=800):
    adapter_path = lora_map[adapter_choice]
    if adapter_path not in [None, "None"]:
        adapter_path = f"data/Art_adapters/{adapter_path}/adapter_alpha1.0_rank1_all_up_1000steps.pt"
        style_prompt="sks art"
    else:
        style_prompt=None
    prompts = [prompt]
    # convert np to pil
    ref_image = [Image.fromarray(ref_image)]
    network = get_lora_network(pipe.unet, adapter_path, weight_dtype=dtype)["network"]
    infer_loader = get_validation_dataloader(prompts, ref_image,num_workers=0)
    pred_images = inference(network, pipe.tokenizer, pipe.text_encoder, pipe.vae, pipe.unet, pipe.scheduler, infer_loader,
                            height=512, width=512, scales=[adapter_scale],
                            save_dir=None, seed=seed,steps=steps, guidance_scale=guidance_scale,
                            start_noise=start_noise, show=False, style_prompt=style_prompt, no_load=True,
                            from_scratch=False, device=device, weight_dtype=dtype)[0][adapter_scale][0]
    return pred_images




block = gr.Blocks()
# Direct infer
with block:
    with gr.Group():
        gr.Markdown(" # Art-Free Diffusion Demo")
        gr.Markdown("(More features in development...)")
        with gr.Row():
            text = gr.Textbox(
                label="Enter your prompt (long and detailed would be better):",
                max_lines=10,
                placeholder="Enter your prompt (long and detailed would be better)",
                container=True,
                value="A blue bench situated in a park, surrounded by trees and leaves. The bench is positioned under a tree, providing shade and a peaceful atmosphere. There are several benches in the park, with one being closer to the foreground and the others further in the background. A person can be seen in the distance, possibly enjoying the park or taking a walk. The overall scene is serene and inviting, with the bench serving as a focal point in the park's landscape.",
            )

        with gr.Tab('Generation'):
            with gr.Row():
                with gr.Column():
                    # gr.Markdown("## Art-Free Generation")
                    # gr.Markdown("Generate images from text prompts.")

                    gallery_gen_ori = gr.Image(
                        label="W/O Adapter",
                        show_label=True,
                        elem_id="gallery",
                        height="auto"
                    )


                with gr.Column():
                    # gr.Markdown("## Art-Free Generation")
                    # gr.Markdown("Generate images from text prompts.")
                    gallery_gen_art = gr.Image(
                        label="W/ Adapter",
                        show_label=True,
                        elem_id="gallery",
                        height="auto"
                    )


            with gr.Row():
                btn_gen_ori = gr.Button("Art-Free Generate", scale=1)
                btn_gen_art = gr.Button("Artistic Generate", scale=1)


        with gr.Tab('Stylization'):
            with gr.Row():

                with gr.Column():
                    # gr.Markdown("## Art-Free Generation")
                    # gr.Markdown("Generate images from text prompts.")

                    gallery_stylization_ref = gr.Image(
                        label="Ref Image",
                        show_label=True,
                        elem_id="gallery",
                        height="auto",
                        scale=1,
                        value="data/003904765.jpg"
                    )
                with gr.Column(scale=2):
                    with gr.Row():
                        with gr.Column():
                            # gr.Markdown("## Art-Free Generation")
                            # gr.Markdown("Generate images from text prompts.")

                            gallery_stylization_ori = gr.Image(
                                label="W/O Adapter",
                                show_label=True,
                                elem_id="gallery",
                                height="auto",
                                scale=1,
                            )


                        with gr.Column():
                            # gr.Markdown("## Art-Free Generation")
                            # gr.Markdown("Generate images from text prompts.")
                            gallery_stylization_art = gr.Image(
                                label="W/ Adapter",
                                show_label=True,
                                elem_id="gallery",
                                height="auto",
                                scale=1,
                            )
                    start_timestep = gr.Slider(label="Adapter Timestep", minimum=0, maximum=1000, value=800, step=1)
            with gr.Row():
                btn_style_ori = gr.Button("Art-Free Stylize", scale=1)
                btn_style_art = gr.Button("Artistic Stylize", scale=1)


        with gr.Row():
            # with gr.Column():
            # samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1, scale=1)
            scale = gr.Slider(
                label="Guidance Scale", minimum=0, maximum=20, value=7.5, step=0.1
            )
            # with gr.Column():
            adapter_choice = gr.Dropdown(
                label="Select Art Adapter",
                choices=[ "Andre Derain (fauvism)","Vincent van Gogh (post impressionism)","Andy Warhol (pop art)",
                          "Camille Corot (realism)", "Claude Monet (impressionism)", "Pablo Picasso (cubism)", "Gerhard Richter (abstract expressionism)",
                          "Hokusai (ukiyo-e)", "Gustav Klimt (art nouveau)", "Henri Matisse (abstract expressionism)",
                          "Walter Battiss", "Jackson Pollock",  "M.C. Escher", "Albert Gleizes",  "Wassily Kandinsky",
                          "Roy Lichtenstein", "Joan Miro"
                          ],
                value="Andre Derain (fauvism)",
                scale=1
            )

        with gr.Row():
            steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
            adapter_scale = gr.Slider(label="Adapter Scale", minimum=0, maximum=1.5, value=1., step=0.1, scale=1)

        with gr.Row():
            seed = gr.Slider(label="Seed",minimum=0,maximum=2147483647,step=1,randomize=True,scale=1)


        gr.on([btn_gen_ori.click], demo_inference_gen_ori, inputs=[text, seed, steps, scale], outputs=gallery_gen_ori)
        gr.on([btn_gen_art.click], demo_inference_gen_artistic, inputs=[adapter_choice, text, seed, steps, scale, adapter_scale], outputs=gallery_gen_art)

        gr.on([btn_style_ori.click], demo_inference_stylization_ori, inputs=[gallery_stylization_ref, text, seed, steps, scale, start_timestep], outputs=gallery_stylization_ori)
        gr.on([btn_style_art.click], demo_inference_stylization_artistic, inputs=[gallery_stylization_ref, adapter_choice, text, seed, steps, scale, adapter_scale, start_timestep], outputs=gallery_stylization_art)

block.launch()
# block.launch(sharing=True)