File size: 7,333 Bytes
262b155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Authors: Hui Ren (rhfeiyang.github.io)
import os
import sys
import numpy as np
from PIL import Image
import pickle
sys.path.append(os.path.join(os.path.dirname(__file__), "../../../"))
from custom_datasets import get_dataset
from utils.art_filter import Art_filter
import torch
from matplotlib import pyplot as plt
import math
import argparse
import socket
import time
from tqdm import tqdm
import torch
def parse_args():
    parser = argparse.ArgumentParser(description="Filter the coco dataset")
    parser.add_argument("--check", action="store_true", help="Check the complete")
    parser.add_argument("--mode", default="clip_logit", help="Filter mode: clip_logit, clip_filt, caption_filt")
    parser.add_argument("--split" , default="val", help="Dataset split, val/train")
    # parser.add_argument("--start_idx", default=0, type=int, help="Start index")
    args = parser.parse_args()
    return args

def get_feat(save_path, dataloader, filter):
    clip_feat_file = save_path
    # compute_new = False
    clip_feat={}
    if os.path.exists(clip_feat_file):
        with open(clip_feat_file, 'rb') as f:
            clip_feat = pickle.load(f)
    else:
        print(f"computing clip feat",flush=True)
        clip_feature_ret = filter.clip_feature(dataloader)
        clip_feat["image_features"] = clip_feature_ret["clip_features"]
        clip_feat["ids"] = clip_feature_ret["ids"]

        with open(clip_feat_file, 'wb') as f:
            pickle.dump(clip_feat, f)
        print(f"clip_feat_result saved to {clip_feat_file}",flush=True)
    return clip_feat

def get_clip_logit(save_root, dataloader, filter):
    feat_path = os.path.join(save_root, "clip_feat.pickle")
    clip_feat = get_feat(feat_path, dataloader, filter)
    clip_logits_file = os.path.join(save_root, "clip_logits.pickle")
    # if clip_logit:
    if os.path.exists(clip_logits_file):
        with open(clip_logits_file, 'rb') as f:
            clip_logits = pickle.load(f)
    else:
        clip_logits = filter.clip_logit_by_feat(clip_feat["image_features"])
        clip_logits["ids"] = clip_feat["ids"]
        with open(clip_logits_file, 'wb') as f:
            pickle.dump(clip_logits, f)
        print(f"clip_logits_result saved to {clip_logits_file}",flush=True)
    return clip_logits

def clip_filt(save_root, dataloader, filter):
    clip_filt_file = os.path.join(save_root, "clip_filt_result.pickle")
    if os.path.exists(clip_filt_file):
        with open(clip_filt_file, 'rb') as f:
            clip_filt_result = pickle.load(f)
    else:
        clip_logits = get_clip_logit(save_root, dataloader, filter)
        clip_filt_result = filter.clip_filt(clip_logits)
        with open(clip_filt_file, 'wb') as f:
            pickle.dump(clip_filt_result, f)
        print(f"clip_filt_result saved to {clip_filt_file}",flush=True)
    return clip_filt_result

def caption_filt(save_root, dataloader, filter):
    caption_filt_file = os.path.join(save_root, "caption_filt_result.pickle")
    if os.path.exists(caption_filt_file):
        with open(caption_filt_file, 'rb') as f:
            caption_filt_result = pickle.load(f)
    else:
        caption_filt_result = filter.caption_filt(dataloader)
        with open(caption_filt_file, 'wb') as f:
            pickle.dump(caption_filt_result, f)
        print(f"caption_filt_result saved to {caption_filt_file}",flush=True)
    return caption_filt_result

def gather_result(save_dir, dataloader, filter):
    all_remain_ids=[]
    all_remain_ids_train=[]
    all_remain_ids_val=[]
    all_filtered_id_num = 0

    clip_filt_result = clip_filt(save_dir, dataloader, filter)
    caption_filt_result = caption_filt(save_dir, dataloader, filter)

    caption_filtered_ids = [i[0] for i in caption_filt_result["filtered_ids"]]
    all_filtered_id_num += len(set(clip_filt_result["filtered_ids"]) | set(caption_filtered_ids) )
    remain_ids = set(clip_filt_result["remain_ids"]) & set(caption_filt_result["remain_ids"])
    remain_ids = list(remain_ids)
    remain_ids.sort()
    with open(os.path.join(save_dir, "remain_ids.pickle"), 'wb') as f:
        pickle.dump(remain_ids, f)
    print(f"remain_ids saved to {save_dir}/remain_ids.pickle",flush=True)
    return remain_ids

@torch.no_grad()
def main(args):
    filter = Art_filter()
    if args.mode == "caption_filt" or args.mode == "gather_result":
        filter.clip_filter = None
        torch.cuda.empty_cache()

    # caption_folder_path = "/vision-nfs/torralba/scratch/jomat/sam_dataset/PixArt-alpha/captions"
    # image_folder_path = "/vision-nfs/torralba/scratch/jomat/sam_dataset/images"
    # id_dict_dir = "/vision-nfs/torralba/scratch/jomat/sam_dataset/images/id_dict"
    # filt_dir = "/vision-nfs/torralba/scratch/jomat/sam_dataset/filt_result"

    def collate_fn(examples):
        # {"image": image, "id":id}
        ret = {}
        if "image" in examples[0]:
            pixel_values = [example["image"] for example in examples]
            ret["images"] = pixel_values
        if "caption" in examples[0]:
            # prompts = [example["caption"] for example in examples]
            prompts = []
            for example in examples:
                if isinstance(example["caption"][0], list):
                    prompts.append([" ".join(example["caption"][0])])
                else:
                    prompts.append(example["caption"])
            ret["text"] = prompts
        id = [example["id"] for example in examples]
        ret["ids"] = id
        return ret
    if args.split == "val":
        dataset = get_dataset("coco_val")["val"]
    elif args.split == "train":
        dataset = get_dataset("coco_train", get_val=False)["train"]
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=False, num_workers=8, collate_fn=collate_fn)

    error_files=[]



    save_root = f"/vision-nfs/torralba/scratch/jomat/sam_dataset/coco/filt/{args.split}"
    os.makedirs(save_root, exist_ok=True)

    if args.mode == "clip_feat":
        feat_path = os.path.join(save_root, "clip_feat.pickle")
        clip_feat = get_feat(feat_path, dataloader, filter)

    if args.mode == "clip_logit":
        clip_logit = get_clip_logit(save_root, dataloader, filter)

    if args.mode == "clip_filt":
        # if os.path.exists(clip_filt_file):
        #     with open(clip_filt_file, 'rb') as f:
        #         ret = pickle.load(f)
        # else:
        clip_filt_result = clip_filt(save_root, dataloader, filter)

    if args.mode == "caption_filt":
        caption_filt_result = caption_filt(save_root, dataloader, filter)

    if args.mode == "gather_result":
        filtered_result = gather_result(save_root, dataloader, filter)

    print("finished",flush=True)
    for file in error_files:
        # os.remove(file)
        print(file,flush=True)

if __name__ == "__main__":
    args = parse_args()

    log_file = "sam_filt"
    idx=0
    hostname = socket.gethostname()
    now_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
    while os.path.exists(f"{log_file}_{hostname}_check{args.check}_{now_time}_{idx}.log"):
        idx+=1

    main(args)
    # clip_logits_analysis()