File size: 14,458 Bytes
262b155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Authors: Hui Ren (rhfeiyang.github.io)
import os
import sys
import numpy as np
from PIL import Image
import pickle
sys.path.append(os.path.join(os.path.dirname(__file__), "../../"))
from custom_datasets.sam import SamDataset
from utils.art_filter import Art_filter
import torch
from matplotlib import pyplot as plt
import math
import argparse
import socket
import time
from tqdm import tqdm

def parse_args():
    parser = argparse.ArgumentParser(description="Filter the sam dataset")
    parser.add_argument("--check", action="store_true", help="Check the complete")
    parser.add_argument("--mode", default="clip_logit",  choices=["clip_logit_update","clip_logit", "clip_filt", "caption_filt", "gather_result","caption_flit_append"])
    parser.add_argument("--start_idx", default=0, type=int, help="Start index")
    parser.add_argument("--end_idx", default=9e10, type=int, help="Start index")
    args = parser.parse_args()
    return args
@torch.no_grad()
def main(args):
    filter = Art_filter()
    if args.mode == "caption_filt" or args.mode == "gather_result":
        filter.clip_filter = None
        torch.cuda.empty_cache()

    caption_folder_path = "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/clip_dissection/SAM/subset/captions"
    image_folder_path = "/vision-nfs/torralba/scratch/jomat/sam_dataset/nfs-data/sam/images"
    id_dict_dir = "/vision-nfs/torralba/scratch/jomat/sam_dataset/sam_ids/8.16/id_dict"
    filt_dir = "/vision-nfs/torralba/scratch/jomat/sam_dataset/filt_result"
    def collate_fn(examples):
        # {"image": image, "id":id}
        ret = {}
        if "image" in examples[0]:
            pixel_values = [example["image"] for example in examples]
            ret["images"] = pixel_values
        if "text" in examples[0]:
            prompts = [example["text"] for example in examples]
            ret["text"] = prompts
        id = [example["id"] for example in examples]
        ret["ids"] = id
        return ret
    error_files=[]
    val_set = ["sa_000000"]
    result_check_set = ["sa_000020"]
    all_remain_ids=[]
    all_remain_ids_train=[]
    all_remain_ids_val=[]
    all_filtered_id_num = 0
    remain_feat_num = 0
    remain_caption_num = 0
    filter_feat_num = 0
    filter_caption_num = 0
    for idx,file in tqdm(enumerate(sorted(os.listdir(id_dict_dir)))):
        if idx < args.start_idx or idx >= args.end_idx:
            continue
        if file.endswith(".pickle") and not file.startswith("all"):
            print("=====================================")
            print(file,flush=True)
            save_dir = os.path.join(filt_dir, file.replace("_id_dict.pickle", ""))
            if not os.path.exists(save_dir):
                os.makedirs(save_dir, exist_ok=True)
            id_dict_file = os.path.join(id_dict_dir, file)
            with open(id_dict_file, 'rb') as f:
                id_dict = pickle.load(f)
            ids = list(id_dict.keys())
            dataset = SamDataset(image_folder_path, caption_folder_path, id_file=ids, id_dict_file=id_dict_file)
            # dataset = SamDataset(image_folder_path, caption_folder_path, id_file=[10061410, 10076945, 10310013,1042012, 4487809, 4541052], id_dict_file="/vision-nfs/torralba/scratch/jomat/sam_dataset/images/id_dict/all_id_dict.pickle")
            dataloader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=False, num_workers=8, collate_fn=collate_fn)
            clip_logits = None
            clip_logits_file = os.path.join(save_dir, "clip_logits_result.pickle")
            clip_filt_file = os.path.join(save_dir, "clip_filt_result.pickle")
            caption_filt_file = os.path.join(save_dir, "caption_filt_result.pickle")

            if args.mode == "clip_feat":
                compute_new = False
                clip_logits = {}
                if os.path.exists(clip_logits_file):
                    with open(clip_logits_file, 'rb') as f:
                        clip_logits = pickle.load(f)
                    if "image_features" not in clip_logits:
                        compute_new = True
                else:
                    compute_new=True
                if compute_new:
                    if clip_logits == '':
                        clip_logits = {}
                    print(f"compute clip_feat {file}",flush=True)
                    clip_feature_ret = filter.clip_feature(dataloader)
                    clip_logits["image_features"] = clip_feature_ret["clip_features"]
                    if "ids" in clip_logits:
                        assert clip_feature_ret["ids"] == clip_logits["ids"]
                    else:
                        clip_logits["ids"] = clip_feature_ret["ids"]

                    with open(clip_logits_file, 'wb') as f:
                        pickle.dump(clip_logits, f)
                    print(f"clip_feat_result saved to {clip_logits_file}",flush=True)
                else:
                    print(f"skip {clip_logits_file}",flush=True)

            if args.mode == "clip_logit":
            # if clip_logit:
                if os.path.exists(clip_logits_file):
                    try:
                        with open(clip_logits_file, 'rb') as f:
                            clip_logits = pickle.load(f)
                    except:
                        continue
                    skip = True
                    if args.check and clip_logits=="":
                        skip = False

                else:
                    skip = False
                # skip = False
                if not skip:
                    # os.makedirs(os.path.join(save_dir, "tmp"), exist_ok=True)
                    with open(clip_logits_file, 'wb') as f:
                        pickle.dump("", f)
                    try:
                        clip_logits = filter.clip_logit(dataloader)
                    except:
                        print(f"Error in clip_logit {file}",flush=True)
                        continue
                    with open(clip_logits_file, 'wb') as f:
                        pickle.dump(clip_logits, f)
                    print(f"clip_logits_result saved to {clip_logits_file}",flush=True)
                else:
                    print(f"skip {clip_logits_file}",flush=True)

            if args.mode == "clip_logit_update":
                if os.path.exists(clip_logits_file):
                    with open(clip_logits_file, 'rb') as f:
                        clip_logits = pickle.load(f)
                else:
                    print(f"{clip_logits_file} not exist",flush=True)
                    continue
                if clip_logits == "":
                    print(f"skip {clip_logits_file}",flush=True)
                    continue
                ret = filter.clip_logit_by_feat(clip_logits["clip_features"])
                # assert (clip_logits["clip_logits"] - ret["clip_logits"]).abs().max() < 0.01
                clip_logits["clip_logits"] = ret["clip_logits"]
                clip_logits["text"] = ret["text"]
                with open(clip_logits_file, 'wb') as f:
                    pickle.dump(clip_logits, f)


            if args.mode == "clip_filt":
                # if os.path.exists(clip_filt_file):
                #     with open(clip_filt_file, 'rb') as f:
                #         ret = pickle.load(f)
                # else:

                if clip_logits is None:
                    try:
                        with open(clip_logits_file, 'rb') as f:
                            clip_logits = pickle.load(f)
                    except:
                        print(f"Error in loading {clip_logits_file}",flush=True)
                        error_files.append(clip_logits_file)
                        continue
                    if clip_logits == "":
                        print(f"skip {clip_logits_file}",flush=True)
                        error_files.append(clip_logits_file)
                        continue
                clip_filt_result = filter.clip_filt(clip_logits)
                with open(clip_filt_file, 'wb') as f:
                    pickle.dump(clip_filt_result, f)
                print(f"clip_filt_result saved to {clip_filt_file}",flush=True)

            if args.mode == "caption_filt":
                if os.path.exists(caption_filt_file):
                    try:
                        with open(caption_filt_file, 'rb') as f:
                            ret = pickle.load(f)
                    except:
                        continue
                    skip = True
                    if args.check and ret=="":
                        skip = False
                        # os.remove(caption_filt_file)
                        print(f"empty {caption_filt_file}",flush=True)
                        # skip = True
                else:
                    skip = False
                if not skip:
                    with open(caption_filt_file, 'wb') as f:
                        pickle.dump("", f)
                    # try:
                    ret = filter.caption_filt(dataloader)
                    # except:
                    #     print(f"Error in filtering {file}",flush=True)
                    #     continue
                    with open(caption_filt_file, 'wb') as f:
                        pickle.dump(ret, f)
                    print(f"caption_filt_result saved to {caption_filt_file}",flush=True)
                else:
                    print(f"skip {caption_filt_file}",flush=True)

            if args.mode == "caption_flit_append":
                if not os.path.exists(caption_filt_file):
                    print(f"{caption_filt_file} not exist",flush=True)
                    continue
                with open(caption_filt_file, 'rb') as f:
                    old_caption_filt_result = pickle.load(f)
                skip = True
                for i in filter.caption_filter.filter_prompts:
                    if i not in old_caption_filt_result["filter_prompts"]:
                        skip = False
                        break
                if skip:
                    print(f"skip {caption_filt_file}",flush=True)
                    continue
                old_remain_ids = old_caption_filt_result["remain_ids"]
                new_dataset = SamDataset(image_folder_path, caption_folder_path, id_file=old_remain_ids, id_dict_file=id_dict_file)
                new_dataloader = torch.utils.data.DataLoader(new_dataset, batch_size=64, shuffle=False, num_workers=8, collate_fn=collate_fn)
                ret = filter.caption_filt(new_dataloader)
                old_caption_filt_result["remain_ids"] = ret["remain_ids"]
                old_caption_filt_result["filtered_ids"].extend(ret["filtered_ids"])
                new_filter_count = ret["filter_count"].copy()
                for i in range(len(old_caption_filt_result["filter_count"])):
                    new_filter_count[i] += old_caption_filt_result["filter_count"][i]

                old_caption_filt_result["filter_count"] = new_filter_count
                old_caption_filt_result["filter_prompts"] = ret["filter_prompts"]
                with open(caption_filt_file, 'wb') as f:
                    pickle.dump(old_caption_filt_result, f)



            if args.mode == "gather_result":
                with open(clip_filt_file, 'rb') as f:
                    clip_filt_result = pickle.load(f)
                with open(caption_filt_file, 'rb') as f:
                    caption_filt_result = pickle.load(f)
                caption_filtered_ids = [i[0] for i in caption_filt_result["filtered_ids"]]
                all_filtered_id_num += len(set(clip_filt_result["filtered_ids"]) | set(caption_filtered_ids) )

                remain_feat_num += len(clip_filt_result["remain_ids"])
                remain_caption_num += len(caption_filt_result["remain_ids"])
                filter_feat_num += len(clip_filt_result["filtered_ids"])
                filter_caption_num += len(caption_filtered_ids)

                remain_ids = set(clip_filt_result["remain_ids"]) & set(caption_filt_result["remain_ids"])
                remain_ids = list(remain_ids)
                remain_ids.sort()
                # with open(os.path.join(save_dir, "remain_ids.pickle"), 'wb') as f:
                #     pickle.dump(remain_ids, f)
                # print(f"remain_ids saved to {save_dir}/remain_ids.pickle",flush=True)
                all_remain_ids.extend(remain_ids)
                if file.replace("_id_dict.pickle","") in val_set:
                    all_remain_ids_val.extend(remain_ids)
                else:
                    all_remain_ids_train.extend(remain_ids)
    if args.mode == "gather_result":
        print(f"filtered ids: {all_filtered_id_num}",flush=True)
        print(f"remain feat num: {remain_feat_num}",flush=True)
        print(f"remain caption num: {remain_caption_num}",flush=True)
        print(f"filter feat num: {filter_feat_num}",flush=True)
        print(f"filter caption num: {filter_caption_num}",flush=True)
        all_remain_ids.sort()
        with open(os.path.join(filt_dir, "all_remain_ids.pickle"), 'wb') as f:
            pickle.dump(all_remain_ids, f)
        with open(os.path.join(filt_dir, "all_remain_ids_train.pickle"), 'wb') as f:
            pickle.dump(all_remain_ids_train, f)
        with open(os.path.join(filt_dir, "all_remain_ids_val.pickle"), 'wb') as f:
            pickle.dump(all_remain_ids_val, f)

        print(f"all_remain_ids saved to {filt_dir}/all_remain_ids.pickle",flush=True)
        print(f"all_remain_ids_train saved to {filt_dir}/all_remain_ids_train.pickle",flush=True)
        print(f"all_remain_ids_val saved to {filt_dir}/all_remain_ids_val.pickle",flush=True)

    print("finished",flush=True)
    for file in error_files:
        # os.remove(file)
        print(file,flush=True)

if __name__ == "__main__":
    args = parse_args()

    log_file = "sam_filt"
    idx=0
    hostname = socket.gethostname()
    now_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
    while os.path.exists(f"{log_file}_{hostname}_check{args.check}_{now_time}_{idx}.log"):
        idx+=1

    main(args)
    # clip_logits_analysis()