Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,063 Bytes
262b155 8cdc5c2 262b155 8cdc5c2 262b155 a7876f7 262b155 c62a333 262b155 c62a333 262b155 cf66859 c62a333 262b155 b851c53 262b155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
# Authors: Hui Ren (rhfeiyang.github.io)
import torch
from PIL import Image
import argparse
import os, json, random
import matplotlib.pyplot as plt
import glob, re
from tqdm import tqdm
import numpy as np
import sys
import gc
from transformers import CLIPTextModel, CLIPTokenizer, BertModel, BertTokenizer
# import train_util
from utils.train_util import get_noisy_image, encode_prompts
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler, DDIMScheduler, PNDMScheduler
from typing import Any, Dict, List, Optional, Tuple, Union
from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
import argparse
# from diffusers.training_utils import EMAModel
import shutil
import yaml
from easydict import EasyDict
from utils.metrics import StyleContentMetric
from torchvision import transforms
from custom_datasets.coco import CustomCocoCaptions
from custom_datasets.imagepair import ImageSet
from custom_datasets import get_dataset
# from stable_diffusion.utils.modules import get_diffusion_modules
# from diffusers import StableDiffusionImg2ImgPipeline
from diffusers.utils.torch_utils import randn_tensor
import pickle
import time
from datetime import datetime
def flush():
torch.cuda.empty_cache()
gc.collect()
def get_train_method(lora_weight):
if lora_weight is None:
return 'None'
if 'full' in lora_weight:
train_method = 'full'
elif "down_1_up_2_attn" in lora_weight:
train_method = 'up_2_attn'
print(f"Using up_2_attn for {lora_weight}")
elif "down_2_up_1_up_2_attn" in lora_weight:
train_method = 'down_2_up_2_attn'
elif "down_2_up_2_attn" in lora_weight:
train_method = 'down_2_up_2_attn'
elif "down_2_attn" in lora_weight:
train_method = 'down_2_attn'
elif 'noxattn' in lora_weight:
train_method = 'noxattn'
elif "xattn" in lora_weight:
train_method = 'xattn'
elif "attn" in lora_weight:
train_method = 'attn'
elif "all_up" in lora_weight:
train_method = 'all_up'
else:
train_method = 'None'
return train_method
def get_validation_dataloader(infer_prompts:list[str]=None, infer_images :list[str]=None,resolution=512, batch_size=10, num_workers=4, val_set="laion_pop500"):
data_transforms = transforms.Compose(
[
transforms.Resize(resolution),
transforms.CenterCrop(resolution),
]
)
def preprocess(example):
ret={}
ret["image"] = data_transforms(example["image"]) if "image" in example else None
if "caption" in example:
if isinstance(example["caption"][0], list):
ret["caption"] = example["caption"][0][0]
else:
ret["caption"] = example["caption"][0]
if "seed" in example:
ret["seed"] = example["seed"]
if "id" in example:
ret["id"] = example["id"]
if "path" in example:
ret["path"] = example["path"]
return ret
def collate_fn(examples):
out = {}
if "image" in examples[0]:
pixel_values = [example["image"] for example in examples]
out["pixel_values"] = pixel_values
# notice: only take the first prompt for each image
if "caption" in examples[0]:
prompts = [example["caption"] for example in examples]
out["prompts"] = prompts
if "seed" in examples[0]:
seeds = [example["seed"] for example in examples]
out["seed"] = seeds
if "path" in examples[0]:
paths = [example["path"] for example in examples]
out["path"] = paths
return out
if infer_prompts is None:
if val_set == "lhq500":
dataset = get_dataset("lhq_sub500", get_val=False)["train"]
elif val_set == "custom_coco100":
dataset = get_dataset("custom_coco100", get_val=False)["train"]
elif val_set == "custom_coco500":
dataset = get_dataset("custom_coco500", get_val=False)["train"]
elif os.path.isdir(val_set):
image_folder = os.path.join(val_set, "paintings")
caption_folder = os.path.join(val_set, "captions")
dataset = ImageSet(folder=image_folder, caption=caption_folder, keep_in_mem=True)
elif "custom_caption" in val_set:
from custom_datasets.custom_caption import Caption_set
name = val_set.replace("custom_caption_", "")
dataset = Caption_set(set_name = name)
elif val_set == "laion_pop500":
dataset = get_dataset("laion_pop500", get_val=False)["train"]
elif val_set == "laion_pop500_first_sentence":
dataset = get_dataset("laion_pop500_first_sentence", get_val=False)["train"]
else:
raise ValueError("Unknown dataset")
dataset.with_transform(preprocess)
elif isinstance(infer_prompts, torch.utils.data.Dataset):
dataset = infer_prompts
try:
dataset.with_transform(preprocess)
except:
pass
else:
class Dataset(torch.utils.data.Dataset):
def __init__(self, prompts, images=None):
self.prompts = prompts
self.images = images
self.get_img = False
if images is not None:
assert len(prompts) == len(images)
self.get_img = True
if isinstance(images[0], str):
self.images = [Image.open(image).convert("RGB") for image in images]
else:
self.images = [None] * len(prompts)
def __len__(self):
return len(self.prompts)
def __getitem__(self, idx):
img = self.images[idx]
if self.get_img and img is not None:
img = data_transforms(img)
return {"caption": self.prompts[idx], "image":img}
dataset = Dataset(infer_prompts, infer_images)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False,
num_workers=num_workers, pin_memory=True)
return dataloader
def get_lora_network(unet , lora_path, train_method="None", rank=1, alpha=1.0, device="cuda", weight_dtype=torch.float32):
if train_method in [None, "None"]:
train_method = get_train_method(lora_path)
print(f"Train method: {train_method}")
network_type = "c3lier"
if train_method == 'xattn':
network_type = 'lierla'
modules = DEFAULT_TARGET_REPLACE
if network_type == "c3lier":
modules += UNET_TARGET_REPLACE_MODULE_CONV
alpha = 1
if "rank" in lora_path:
rank = int(re.search(r'rank(\d+)', lora_path).group(1))
if 'alpha1' in lora_path:
alpha = 1.0
print(f"Rank: {rank}, Alpha: {alpha}")
network = LoRANetwork(
unet,
rank=rank,
multiplier=1.0,
alpha=alpha,
train_method=train_method,
).to(device, dtype=weight_dtype)
if lora_path not in [None, "None"]:
lora_state_dict = torch.load(lora_path)
miss = network.load_state_dict(lora_state_dict, strict=False)
print(f"Missing: {miss}")
ret = {"network": network, "train_method": train_method}
return ret
def get_model(pretrained_ckpt_path, unet_ckpt=None,revision=None, variant=None, lora_path=None, weight_dtype=torch.float32,
device="cuda"):
modules = {}
pipe = DiffusionPipeline.from_pretrained(pretrained_ckpt_path, revision=revision, variant=variant)
if unet_ckpt is not None:
pipe.unet.from_pretrained(unet_ckpt, subfolder="unet_ema", revision=revision, variant=variant)
unet = pipe.unet
vae = pipe.vae
text_encoder = pipe.text_encoder
tokenizer = pipe.tokenizer
modules["unet"] = unet
modules["vae"] = vae
modules["text_encoder"] = text_encoder
modules["tokenizer"] = tokenizer
# tokenizer = modules["tokenizer"]
unet.enable_xformers_memory_efficient_attention()
unet.to(device, dtype=weight_dtype)
if weight_dtype != torch.bfloat16:
vae.to(device, dtype=torch.float32)
else:
vae.to(device, dtype=weight_dtype)
text_encoder.to(device, dtype=weight_dtype)
if lora_path is not None:
network = get_lora_network(unet, lora_path, device=device, weight_dtype=weight_dtype)
modules["network"] = network
return modules
@torch.no_grad()
def inference(network: LoRANetwork, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, vae: AutoencoderKL, unet: UNet2DConditionModel, noise_scheduler: LMSDiscreteScheduler,
dataloader, height:int, width:int, scales:list = np.linspace(0,2,5),save_dir:str=None, seed:int = None,
weight_dtype: torch.dtype = torch.float32, device: torch.device="cuda", batch_size:int=1, steps:int=50, guidance_scale:float=7.5, start_noise:int=800,
uncond_prompt:str=None, uncond_embed=None, style_prompt = None, show:bool = False, no_load:bool=False, from_scratch=False):
print(f"current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print(f"save dir: {save_dir}")
if start_noise < 0:
assert from_scratch
network = network.eval()
unet = unet.eval()
vae = vae.eval()
do_convert = not from_scratch
if not do_convert:
try:
dataloader.dataset.get_img = False
except:
pass
scales = list(scales)
else:
scales = ["Real Image"] + list(scales)
if not no_load and os.path.exists(os.path.join(save_dir, "infer_imgs.pickle")):
with open(os.path.join(save_dir, "infer_imgs.pickle"), 'rb') as f:
pred_images = pickle.load(f)
take=True
for key in scales:
if key not in pred_images:
take=False
break
if take:
print(f"Found existing inference results in {save_dir}", flush=True)
return pred_images
max_length = tokenizer.model_max_length
pred_images = {scale :[] for scale in scales}
all_seeds = {scale:[] for scale in scales}
prompts = []
ori_prompts = []
if save_dir is not None:
img_output_dir = os.path.join(save_dir, "outputs")
os.makedirs(img_output_dir, exist_ok=True)
if uncond_embed is None:
if uncond_prompt is None:
uncond_input_text = [""]
else:
uncond_input_text = [uncond_prompt]
uncond_embed = encode_prompts(tokenizer = tokenizer, text_encoder = text_encoder, prompts = uncond_input_text)
for batch in dataloader:
ori_prompt = batch["prompts"]
image = batch["pixel_values"] if do_convert else None
if do_convert:
pred_images["Real Image"] += image
if isinstance(ori_prompt, list):
if isinstance(text_encoder, CLIPTextModel):
# trunc prompts for clip encoder
ori_prompt = [p.split(".")[0]+"." for p in ori_prompt]
prompt = [f"{p.strip()[::-1].replace('.', '',1)[::-1]} in the style of {style_prompt}" for p in ori_prompt] if style_prompt is not None else ori_prompt
else:
if isinstance(text_encoder, CLIPTextModel):
ori_prompt = ori_prompt.split(".")[0]+"."
prompt = f"{prompt.strip()[::-1].replace('.', '',1)[::-1]} in the style of {style_prompt}" if style_prompt is not None else ori_prompt
bcz = len(prompt)
single_seed = seed
if dataloader.batch_size == 1 and seed is None:
if "seed" in batch:
single_seed = batch["seed"][0]
print(f"{prompt}, seed={single_seed}")
# text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt").to(device)
# original_embeddings = text_encoder(**text_input)[0]
prompts += prompt
ori_prompts += ori_prompt
# style_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt").to(device)
# # style_embeddings = text_encoder(**style_input)[0]
# style_embeddings = text_encoder(style_input.input_ids, return_dict=False)[0]
style_embeddings = encode_prompts(tokenizer = tokenizer, text_encoder = text_encoder, prompts = prompt)
original_embeddings = encode_prompts(tokenizer = tokenizer, text_encoder = text_encoder, prompts = ori_prompt)
if uncond_embed.shape[0] == 1 and bcz > 1:
uncond_embeddings = uncond_embed.repeat(bcz, 1, 1)
else:
uncond_embeddings = uncond_embed
style_text_embeddings = torch.cat([uncond_embeddings, style_embeddings]).to(weight_dtype)
# original_embeddings = torch.cat([uncond_embeddings, original_embeddings]).to(weight_dtype)
generator = torch.manual_seed(single_seed) if single_seed is not None else None
noise_scheduler.set_timesteps(steps)
if do_convert:
noised_latent, _, _ = get_noisy_image(image, vae, generator, unet, noise_scheduler, total_timesteps=int((1000-start_noise)/1000 *steps))
else:
latent_shape = (bcz, 4, height//8, width//8)
noised_latent = randn_tensor(latent_shape, generator=generator, device=vae.device)
noised_latent = noised_latent.to(unet.dtype)
noised_latent = noised_latent * noise_scheduler.init_noise_sigma
for scale in scales:
start_time = time.time()
if not isinstance(scale, float) and not isinstance(scale, int):
continue
latents = noised_latent.clone().to(weight_dtype).to(device)
noise_scheduler.set_timesteps(steps)
for t in tqdm(noise_scheduler.timesteps):
if do_convert and t>start_noise:
continue
else:
if t > start_noise and start_noise >= 0:
current_scale = 0
else:
current_scale = scale
network.set_lora_slider(scale=current_scale)
text_embedding = style_text_embeddings
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2).to(weight_dtype)
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t).to(weight_dtype)
# predict the noise residual
with network:
# print(f"dtype: {latent_model_input.dtype}, {text_embedding.dtype}, t={t}")
noise_pred = unet(latent_model_input, t , encoder_hidden_states=text_embedding).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
if isinstance(noise_scheduler, DDPMScheduler):
latents = noise_scheduler.step(noise_pred, t, latents, generator=torch.manual_seed(single_seed+t) if single_seed is not None else None).prev_sample
else:
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents.to(vae.dtype)
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).to(torch.float32).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
pred_images[scale]+=pil_images
all_seeds[scale] += [single_seed] * bcz
end_time = time.time()
print(f"Time taken for one batch, Art Adapter scale={scale}: {end_time-start_time}", flush=True)
if save_dir is not None or show:
end_idx = len(list(pred_images.values())[0])
for i in range(end_idx-bcz, end_idx):
keys = list(pred_images.keys())
images_list = [pred_images[key][i] for key in keys]
prompt = prompts[i]
if len(scales)==1:
plt.imshow(images_list[0])
plt.axis('off')
plt.title(f"{prompt}_{single_seed}_start{start_noise}", fontsize=20)
else:
fig, ax = plt.subplots(1, len(images_list), figsize=(len(scales)*5,6), layout="constrained")
for id, a in enumerate(ax):
a.imshow(images_list[id])
if isinstance(scales[id], float) or isinstance(scales[id], int):
a.set_title(f"Art Adapter scale={scales[id]}", fontsize=20)
else:
a.set_title(f"{keys[id]}", fontsize=20)
a.axis('off')
# plt.suptitle(f"{os.path.basename(lora_weight).replace('.pt','')}", fontsize=20)
# plt.tight_layout()
# if do_convert:
# plt.suptitle(f"{prompt}\nseed{single_seed}_start{start_noise}_guidance{guidance_scale}", fontsize=20)
# else:
# plt.suptitle(f"{prompt}\nseed{single_seed}_from_scratch_guidance{guidance_scale}", fontsize=20)
if save_dir is not None:
plt.savefig(f"{img_output_dir}/{prompt.replace(' ', '_')[:100]}_seed{single_seed}_start{start_noise}.png")
if show:
plt.show()
plt.close()
flush()
if save_dir is not None:
with open(os.path.join(save_dir, "infer_imgs.pickle" ), 'wb') as f:
pickle.dump(pred_images, f)
with open(os.path.join(save_dir, "all_seeds.pickle"), 'wb') as f:
to_save={"all_seeds":all_seeds, "batch_size":batch_size}
pickle.dump(to_save, f)
for scale, images in pred_images.items():
subfolder = os.path.join(save_dir,"images", f"{scale}")
os.makedirs(subfolder, exist_ok=True)
used_prompt = ori_prompts
if (isinstance(scale, float) or isinstance(scale, int)): #and scale != 0:
used_prompt = prompts
for i, image in enumerate(images):
if scale == "Real Image":
suffix = ""
else:
suffix = f"_seed{all_seeds[scale][i]}"
image.save(os.path.join(subfolder, f"{used_prompt[i].replace(' ', '_')[:100]}{suffix}.jpg"))
with open(os.path.join(save_dir, "infer_prompts.txt"), 'w') as f:
for prompt in prompts:
f.write(f"{prompt}\n")
with open(os.path.join(save_dir, "ori_prompts.txt"), 'w') as f:
for prompt in ori_prompts:
f.write(f"{prompt}\n")
print(f"Saved inference results to {save_dir}", flush=True)
return pred_images, prompts
@torch.no_grad()
def infer_metric(ref_image_folder,pred_images, prompts, save_dir, start_noise=""):
prompts = [prompt.split(" in the style of ")[0] for prompt in prompts]
scores = {}
original_images = pred_images["Real Image"] if "Real Image" in pred_images else None
metric = StyleContentMetric(ref_image_folder)
for scale, images in pred_images.items():
score = metric(images, original_images, prompts)
scores[scale] = score
print(f"Style transfer score at scale {scale}: {score}")
scores["ref_path"] = ref_image_folder
save_name = f"scores_start{start_noise}.json"
os.makedirs(save_dir, exist_ok=True)
with open(os.path.join(save_dir, save_name), 'w') as f:
json.dump(scores, f, indent=2)
return scores
def parse_args():
parser = argparse.ArgumentParser(description='Inference with LoRA')
parser.add_argument('--lora_weights', type=str, default=["None"],
nargs='+', help='path to your model file')
parser.add_argument('--prompts', type=str, default=[],
nargs='+', help='prompts to try')
parser.add_argument("--prompt_file", type=str, default=None, help="path to the prompt file")
parser.add_argument("--prompt_file_key", type=str, default="prompts", help="key to the prompt file")
parser.add_argument('--resolution', type=int, default=512, help='resolution of the image')
parser.add_argument('--seed', type=int, default=None, help='seed for the random number generator')
parser.add_argument("--start_noise", type=int, default=800, help="start noise")
parser.add_argument("--from_scratch", default=False, action="store_true", help="from scratch")
parser.add_argument("--ref_image_folder", type=str, default=None, help="folder containing reference images")
parser.add_argument("--show", action="store_true", help="show the image")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--scales", type=float, default=[0.,1.], nargs='+', help="scales to test")
parser.add_argument("--train_method", type=str, default=None, help="train method")
# parser.add_argument("--vae_path", type=str, default="CompVis/stable-diffusion-v1-4", help="Path to the VAE model.")
# parser.add_argument("--text_encoder_path", type=str, default="CompVis/stable-diffusion-v1-4", help="Path to the text encoder model.")
parser.add_argument("--pretrained_model_name_or_path", type=str, default="rhfeiyang/art-free-diffusion-v1", help="Path to the pretrained model.")
parser.add_argument("--unet_ckpt", default=None, type=str, help="Path to the unet checkpoint")
parser.add_argument("--guidance_scale", type=float, default=5.0, help="guidance scale")
parser.add_argument("--infer_mode", default="sks_art", help="inference mode") #, choices=["style", "ori", "artist", "sks_art","Peter"]
parser.add_argument("--save_dir", type=str, default="inference_output", help="save directory")
parser.add_argument("--num_workers", type=int, default=4, help="number of workers")
parser.add_argument("--no_load", action="store_true", help="no load the pre-inferred results")
parser.add_argument("--infer_prompts", type=str, default=None, nargs="+", help="prompts to infer")
parser.add_argument("--infer_images", type=str, default=None, nargs="+", help="images to infer")
parser.add_argument("--rank", type=int, default=1, help="rank of the lora")
parser.add_argument("--val_set", type=str, default="laion_pop500", help="validation set")
parser.add_argument("--folder_name", type=str, default=None, help="folder name")
parser.add_argument("--scheduler_type",type=str, choices=["ddpm", "ddim", "pndm","lms"], default="ddpm", help="scheduler type")
parser.add_argument("--infer_steps", type=int, default=50, help="inference steps")
parser.add_argument("--weight_dtype", type=str, default="fp32", help="weight dtype")
parser.add_argument("--custom_coco_cap", action="store_true", help="use custom coco caption")
args = parser.parse_args()
if args.infer_prompts is not None and len(args.infer_prompts) == 1 and os.path.isfile(args.infer_prompts[0]):
if args.infer_prompts[0].endswith(".txt") and args.custom_coco_cap:
args.infer_prompts = CustomCocoCaptions(custom_file=args.infer_prompts[0])
elif args.infer_prompts[0].endswith(".txt"):
with open(args.infer_prompts[0], 'r') as f:
args.infer_prompts = f.readlines()
args.infer_prompts = [prompt.strip() for prompt in args.infer_prompts]
elif args.infer_prompts[0].endswith(".csv"):
from custom_datasets.custom_caption import Caption_set
caption_set = Caption_set(args.infer_prompts[0])
args.infer_prompts = caption_set
if args.infer_mode == "style":
with open(os.path.join(args.ref_image_folder, "style_label.txt"), 'r') as f:
args.style_label = f.readlines()[0].strip()
elif args.infer_mode == "artist":
with open(os.path.join(args.ref_image_folder, "style_label.txt"), 'r') as f:
args.style_label = f.readlines()[0].strip()
args.style_label = args.style_label.split(",")[0].strip()
elif args.infer_mode == "ori":
args.style_label = None
else:
args.style_label = args.infer_mode.replace("_", " ")
if args.ref_image_folder is not None:
args.ref_image_folder = os.path.join(args.ref_image_folder, "paintings")
if args.start_noise < 0:
args.from_scratch = True
print(args.__dict__)
return args
def main(args):
lora_weights = args.lora_weights
if len(lora_weights) == 1 and isinstance(lora_weights[0], str) and os.path.isdir(lora_weights[0]):
lora_weights = glob.glob(os.path.join(lora_weights[0], "*.pt"))
lora_weights=sorted(lora_weights, reverse=True)
width = args.resolution
height = args.resolution
steps = args.infer_steps
revision = None
device = 'cuda'
rank = args.rank
if args.weight_dtype == "fp32":
weight_dtype = torch.float32
elif args.weight_dtype=="fp16":
weight_dtype = torch.float16
elif args.weight_dtype=="bf16":
weight_dtype = torch.bfloat16
modules = get_model(args.pretrained_model_name_or_path, unet_ckpt=args.unet_ckpt, revision=revision, variant=None, lora_path=None, weight_dtype=weight_dtype, device=device, )
if args.scheduler_type == "pndm":
noise_scheduler = PNDMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
elif args.scheduler_type == "ddpm":
noise_scheduler = DDPMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
elif args.scheduler_type == "ddim":
noise_scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
prediction_type="epsilon",
)
elif args.scheduler_type == "lms":
noise_scheduler = LMSDiscreteScheduler(beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000)
else:
raise ValueError("Unknown scheduler type")
cache=EasyDict()
cache.modules = modules
unet = modules["unet"]
vae = modules["vae"]
text_encoder = modules["text_encoder"]
tokenizer = modules["tokenizer"]
unet.requires_grad_(False)
# Move unet, vae and text_encoder to device and cast to weight_dtype
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
## dataloader
dataloader = get_validation_dataloader(infer_prompts=args.infer_prompts, infer_images=args.infer_images,
resolution=args.resolution,
batch_size=args.batch_size, num_workers=args.num_workers,
val_set=args.val_set)
for lora_weight in lora_weights:
print(f"Testing {lora_weight}")
# for different seeds on same prompt
seed = args.seed
network_ret = get_lora_network(unet, lora_weight, train_method=args.train_method, rank=rank, alpha=1.0, device=device, weight_dtype=weight_dtype)
network = network_ret["network"]
train_method = network_ret["train_method"]
if args.save_dir is not None:
save_dir = args.save_dir
if args.style_label is not None:
save_dir = os.path.join(save_dir, f"{args.style_label.replace(' ', '_')}")
else:
save_dir = os.path.join(save_dir, f"ori/{args.start_noise}")
else:
if args.folder_name is not None:
folder_name = args.folder_name
else:
folder_name = "validation" if args.infer_prompts is None else "validation_prompts"
save_dir = os.path.join(os.path.dirname(lora_weight), f"{folder_name}/{train_method}", os.path.basename(lora_weight).replace('.pt','').split('_')[-1])
if args.infer_prompts is None:
save_dir = os.path.join(save_dir, f"{args.val_set}")
infer_config = f"{args.scheduler_type}{args.infer_steps}_{args.weight_dtype}_guidance{args.guidance_scale}"
save_dir = os.path.join(save_dir, infer_config)
os.makedirs(save_dir, exist_ok=True)
if args.from_scratch:
save_dir = os.path.join(save_dir, "from_scratch")
else:
save_dir = os.path.join(save_dir, "transfer")
save_dir = os.path.join(save_dir, f"start{args.start_noise}")
os.makedirs(save_dir, exist_ok=True)
with open(os.path.join(save_dir, "infer_args.yaml"), 'w') as f:
yaml.dump(vars(args), f)
# save code
code_dir = os.path.join(save_dir, "code")
os.makedirs(code_dir, exist_ok=True)
current_file = os.path.basename(__file__)
shutil.copy(__file__, os.path.join(code_dir, current_file))
with torch.no_grad():
pred_images, prompts = inference(network, tokenizer, text_encoder, vae, unet, noise_scheduler, dataloader, height, width,
args.scales, save_dir, seed, weight_dtype, device, args.batch_size, steps, guidance_scale=args.guidance_scale,
start_noise=args.start_noise, show=args.show, style_prompt=args.style_label, no_load=args.no_load,
from_scratch=args.from_scratch)
if args.ref_image_folder is not None:
flush()
print("Calculating metrics")
infer_metric(args.ref_image_folder, pred_images, save_dir, args.start_noise)
if __name__ == "__main__":
args = parse_args()
main(args) |