template-space-docker-v1 / load_data.py
rhoitjadhav's picture
update dockerfile
142dd1a
raw
history blame
4 kB
import os
import sys
import requests
import time
import pandas as pd
import argilla as rg
from datasets import load_dataset
from argilla.labeling.text_classification import Rule, add_rules
def load_datasets():
# This is the code that you want to execute when the endpoint is available
print("Argilla is available! Loading datasets")
api_key = sys.argv[-1]
rg.init(api_key=api_key, workspace="team")
# load dataset from json
my_dataframe = pd.read_json(
"https://raw.githubusercontent.com/recognai/datasets/main/sst-sentimentclassification.json")
# convert pandas dataframe to DatasetForTextClassification
dataset_rg = rg.DatasetForTextClassification.from_pandas(my_dataframe)
# Define labeling schema to avoid UI user modification
settings = rg.TextClassificationSettings(label_schema=["POSITIVE", "NEGATIVE"])
rg.configure_dataset(name="sst-sentiment-explainability", settings=settings)
# log the dataset
rg.log(
dataset_rg,
name="sst-sentiment-explainability",
tags={
"description": "The sst2 sentiment dataset with predictions from a pretrained pipeline and explanations from Transformers Interpret."
}
)
dataset = load_dataset("argilla/news-summary", split="train").select(range(100))
dataset_rg = rg.read_datasets(dataset, task="Text2Text")
# log the dataset
rg.log(
dataset_rg,
name="news-text-summarization",
tags={
"description": "A text summarization dataset with news pieces and their predicted summaries."
}
)
# Read dataset from Hub
dataset_rg = rg.read_datasets(
load_dataset("argilla/agnews_weak_labeling", split="train"),
task="TextClassification",
)
# Define labeling schema to avoid UI user modification
settings = rg.TextClassificationSettings(label_schema=["World", "Sports", "Sci/Tech", "Business"])
rg.configure_dataset(name="news-programmatic-labeling", settings=settings)
# log the dataset
rg.log(
dataset_rg,
name="news-programmatic-labeling",
tags={
"description": "The AG News with programmatic labeling rules (see weak labeling mode in the UI)."
}
)
# define queries and patterns for each category (using ES DSL)
queries = [
(["money", "financ*", "dollar*"], "Business"),
(["war", "gov*", "minister*", "conflict"], "World"),
(["*ball", "sport*", "game", "play*"], "Sports"),
(["sci*", "techno*", "computer*", "software", "web"], "Sci/Tech"),
]
# define rules
rules = [Rule(query=term, label=label) for terms, label in queries for term in terms]
# add rules to the dataset
add_rules(dataset="news-programmatic-labeling", rules=rules)
# load dataset from the hub
dataset = load_dataset("argilla/gutenberg_spacy-ner", split="train")
# read in dataset, assuming its a dataset for token classification
dataset_rg = rg.read_datasets(dataset, task="TokenClassification")
# Define labeling schema to avoid UI user modification
labels = ["CARDINAL", "DATE", "EVENT", "FAC", "GPE", "LANGUAGE", "LAW", "LOC", "MONEY", "NORP", "ORDINAL", "ORG",
"PERCENT", "PERSON", "PRODUCT", "QUANTITY", "TIME", "WORK_OF_ART"]
settings = rg.TokenClassificationSettings(label_schema=labels)
rg.configure_dataset(name="gutenberg_spacy-ner-monitoring", settings=settings)
# log the dataset
rg.log(
dataset_rg,
"gutenberg_spacy-ner-monitoring",
tags={
"description": "A dataset containing text from books with predictions from two spaCy NER pre-trained models."
}
)
while True:
try:
response = requests.get("http://0.0.0.0:6900/")
if response.status_code == 200:
load_datasets()
break
else:
time.sleep(10)
except Exception as e:
print(e)
time.sleep(10)
pass