Spaces:
Runtime error
Runtime error
Riccardo Giorato
commited on
Commit
·
61e0f27
1
Parent(s):
b5da431
update stuff
Browse files- .gitignore +2 -0
- app.py +127 -114
- package.json +9 -0
- yarn.lock +4 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
|
2 |
+
node_modules
|
app.py
CHANGED
@@ -6,6 +6,7 @@ import utils
|
|
6 |
|
7 |
is_colab = utils.is_google_colab()
|
8 |
|
|
|
9 |
class Model:
|
10 |
def __init__(self, name, path, prefix):
|
11 |
self.name = name
|
@@ -14,15 +15,16 @@ class Model:
|
|
14 |
self.pipe_t2i = None
|
15 |
self.pipe_i2i = None
|
16 |
|
|
|
17 |
models = [
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
scheduler = DPMSolverMultistepScheduler(
|
28 |
beta_start=0.00085,
|
@@ -37,53 +39,51 @@ scheduler = DPMSolverMultistepScheduler(
|
|
37 |
lower_order_final=True,
|
38 |
)
|
39 |
|
40 |
-
custom_model = None
|
41 |
-
if is_colab:
|
42 |
-
models.insert(0, Model("Custom model", "", ""))
|
43 |
-
custom_model = models[0]
|
44 |
-
|
45 |
last_mode = "txt2img"
|
46 |
-
current_model = models[
|
47 |
current_model_path = current_model.path
|
48 |
|
49 |
if is_colab:
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
if torch.cuda.is_available():
|
64 |
-
|
65 |
|
66 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
67 |
|
68 |
-
def custom_model_changed(path):
|
69 |
-
models[0].path = path
|
70 |
-
global current_model
|
71 |
-
current_model = models[0]
|
72 |
|
73 |
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
80 |
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
-
if img is not None:
|
84 |
-
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
|
85 |
-
else:
|
86 |
-
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)
|
87 |
|
88 |
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):
|
89 |
|
@@ -93,29 +93,31 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
|
|
93 |
if model_path != current_model_path or last_mode != "txt2img":
|
94 |
current_model_path = model_path
|
95 |
|
96 |
-
if is_colab
|
97 |
-
|
|
|
98 |
else:
|
99 |
-
|
100 |
-
|
101 |
|
102 |
if torch.cuda.is_available():
|
103 |
-
|
104 |
last_mode = "txt2img"
|
105 |
|
106 |
-
prompt = current_model.prefix + prompt
|
107 |
result = pipe(
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
return replace_nsfw_images(result)
|
118 |
|
|
|
119 |
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
|
120 |
|
121 |
global last_mode
|
@@ -124,39 +126,43 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
124 |
if model_path != current_model_path or last_mode != "img2img":
|
125 |
current_model_path = model_path
|
126 |
|
127 |
-
if is_colab
|
128 |
-
|
|
|
129 |
else:
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
if torch.cuda.is_available():
|
134 |
-
|
135 |
last_mode = "img2img"
|
136 |
|
137 |
prompt = current_model.prefix + prompt
|
138 |
ratio = min(height / img.height, width / img.width)
|
139 |
-
img = img.resize(
|
|
|
140 |
result = pipe(
|
141 |
prompt,
|
142 |
-
negative_prompt
|
143 |
# num_images_per_prompt=n_images,
|
144 |
-
init_image
|
145 |
-
num_inference_steps
|
146 |
-
strength
|
147 |
-
guidance_scale
|
148 |
-
width
|
149 |
-
height
|
150 |
-
generator
|
151 |
-
|
152 |
return replace_nsfw_images(result)
|
153 |
|
|
|
154 |
def replace_nsfw_images(results):
|
155 |
for i in range(len(results.images)):
|
156 |
-
|
157 |
-
|
158 |
return results.images[0]
|
159 |
|
|
|
160 |
css = """.playground-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.playground-diffusion-div div h1{font-weight:900;margin-bottom:7px}.playground-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
161 |
"""
|
162 |
with gr.Blocks(css=css) as demo:
|
@@ -179,48 +185,55 @@ with gr.Blocks(css=css) as demo:
|
|
179 |
"""
|
180 |
)
|
181 |
with gr.Row():
|
182 |
-
|
183 |
-
with gr.Column(scale=55):
|
184 |
-
with gr.Group():
|
185 |
-
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
186 |
-
|
187 |
-
with gr.Row():
|
188 |
-
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
189 |
-
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
190 |
|
191 |
-
|
192 |
-
image_out = gr.Image(height=512)
|
193 |
-
# gallery = gr.Gallery(
|
194 |
-
# label="Generated images", show_label=False, elem_id="gallery"
|
195 |
-
# ).style(grid=[1], height="auto")
|
196 |
-
|
197 |
-
with gr.Column(scale=45):
|
198 |
-
with gr.Tab("Options"):
|
199 |
with gr.Group():
|
200 |
-
|
201 |
-
|
202 |
-
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
|
203 |
-
|
204 |
-
with gr.Row():
|
205 |
-
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
206 |
-
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
211 |
|
212 |
-
|
|
|
|
|
|
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
225 |
generate.click(inference, inputs=inputs, outputs=image_out)
|
226 |
|
@@ -234,5 +247,5 @@ with gr.Blocks(css=css) as demo:
|
|
234 |
""")
|
235 |
|
236 |
if not is_colab:
|
237 |
-
|
238 |
-
demo.launch(debug=is_colab, share=is_colab)
|
|
|
6 |
|
7 |
is_colab = utils.is_google_colab()
|
8 |
|
9 |
+
|
10 |
class Model:
|
11 |
def __init__(self, name, path, prefix):
|
12 |
self.name = name
|
|
|
15 |
self.pipe_t2i = None
|
16 |
self.pipe_i2i = None
|
17 |
|
18 |
+
|
19 |
models = [
|
20 |
+
Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
|
21 |
+
Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
|
22 |
+
Model("Beksinski", "s3nh/beksinski-style-stable-diffusion", "beksinski style "),
|
23 |
+
Model("Poolsuite", "prompthero/poolsuite", "poolsuite style "),
|
24 |
+
Model("Robo Diffusion", "nousr/robo-diffusion", ""),
|
25 |
+
Model("Guohua", "Langboat/Guohua-Diffusion", "guohua style "),
|
26 |
+
Model("JWST", "dallinmackay/JWST-Deep-Space-diffusion", "JWST ")
|
27 |
+
]
|
28 |
|
29 |
scheduler = DPMSolverMultistepScheduler(
|
30 |
beta_start=0.00085,
|
|
|
39 |
lower_order_final=True,
|
40 |
)
|
41 |
|
|
|
|
|
|
|
|
|
|
|
42 |
last_mode = "txt2img"
|
43 |
+
current_model = models[0]
|
44 |
current_model_path = current_model.path
|
45 |
|
46 |
if is_colab:
|
47 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
48 |
+
current_model.path, torch_dtype=torch.float16, scheduler=scheduler)
|
49 |
+
|
50 |
+
else: # download all models
|
51 |
+
vae = AutoencoderKL.from_pretrained(
|
52 |
+
current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
53 |
+
for model in models:
|
54 |
+
try:
|
55 |
+
unet = UNet2DConditionModel.from_pretrained(
|
56 |
+
model.path, subfolder="unet", torch_dtype=torch.float16)
|
57 |
+
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(
|
58 |
+
model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
59 |
+
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
|
60 |
+
model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
61 |
+
except:
|
62 |
+
models.remove(model)
|
63 |
+
pipe = models[0].pipe_t2i
|
64 |
+
|
65 |
if torch.cuda.is_available():
|
66 |
+
pipe = pipe.to("cuda")
|
67 |
|
68 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
69 |
|
|
|
|
|
|
|
|
|
70 |
|
71 |
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
72 |
|
73 |
+
global current_model
|
74 |
+
for model in models:
|
75 |
+
if model.name == model_name:
|
76 |
+
current_model = model
|
77 |
+
model_path = current_model.path
|
78 |
+
|
79 |
+
generator = torch.Generator('cuda').manual_seed(
|
80 |
+
seed) if seed != 0 else None
|
81 |
|
82 |
+
if img is not None:
|
83 |
+
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
|
84 |
+
else:
|
85 |
+
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)
|
86 |
|
|
|
|
|
|
|
|
|
87 |
|
88 |
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):
|
89 |
|
|
|
93 |
if model_path != current_model_path or last_mode != "txt2img":
|
94 |
current_model_path = model_path
|
95 |
|
96 |
+
if is_colab:
|
97 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
98 |
+
current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
99 |
else:
|
100 |
+
pipe.to("cpu")
|
101 |
+
pipe = current_model.pipe_t2i
|
102 |
|
103 |
if torch.cuda.is_available():
|
104 |
+
pipe = pipe.to("cuda")
|
105 |
last_mode = "txt2img"
|
106 |
|
107 |
+
prompt = current_model.prefix + prompt
|
108 |
result = pipe(
|
109 |
+
prompt,
|
110 |
+
negative_prompt=neg_prompt,
|
111 |
+
# num_images_per_prompt=n_images,
|
112 |
+
num_inference_steps=int(steps),
|
113 |
+
guidance_scale=guidance,
|
114 |
+
width=width,
|
115 |
+
height=height,
|
116 |
+
generator=generator)
|
117 |
+
|
118 |
return replace_nsfw_images(result)
|
119 |
|
120 |
+
|
121 |
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
|
122 |
|
123 |
global last_mode
|
|
|
126 |
if model_path != current_model_path or last_mode != "img2img":
|
127 |
current_model_path = model_path
|
128 |
|
129 |
+
if is_colab:
|
130 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
131 |
+
current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
132 |
else:
|
133 |
+
pipe.to("cpu")
|
134 |
+
pipe = current_model.pipe_i2i
|
135 |
+
|
136 |
if torch.cuda.is_available():
|
137 |
+
pipe = pipe.to("cuda")
|
138 |
last_mode = "img2img"
|
139 |
|
140 |
prompt = current_model.prefix + prompt
|
141 |
ratio = min(height / img.height, width / img.width)
|
142 |
+
img = img.resize(
|
143 |
+
(int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
144 |
result = pipe(
|
145 |
prompt,
|
146 |
+
negative_prompt=neg_prompt,
|
147 |
# num_images_per_prompt=n_images,
|
148 |
+
init_image=img,
|
149 |
+
num_inference_steps=int(steps),
|
150 |
+
strength=strength,
|
151 |
+
guidance_scale=guidance,
|
152 |
+
width=width,
|
153 |
+
height=height,
|
154 |
+
generator=generator)
|
155 |
+
|
156 |
return replace_nsfw_images(result)
|
157 |
|
158 |
+
|
159 |
def replace_nsfw_images(results):
|
160 |
for i in range(len(results.images)):
|
161 |
+
if results.nsfw_content_detected[i]:
|
162 |
+
results.images[i] = Image.open("nsfw.png")
|
163 |
return results.images[0]
|
164 |
|
165 |
+
|
166 |
css = """.playground-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.playground-diffusion-div div h1{font-weight:900;margin-bottom:7px}.playground-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
167 |
"""
|
168 |
with gr.Blocks(css=css) as demo:
|
|
|
185 |
"""
|
186 |
)
|
187 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
+
with gr.Column(scale=55):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
with gr.Group():
|
191 |
+
model_name = gr.Dropdown(label="Model", choices=[
|
192 |
+
m.name for m in models], value=current_model.name)
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
+
with gr.Row():
|
195 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,
|
196 |
+
placeholder="Enter prompt. Style applied automatically").style(container=False)
|
197 |
+
generate = gr.Button(value="Generate").style(
|
198 |
+
rounded=(False, True, True, False))
|
199 |
|
200 |
+
image_out = gr.Image(height=512)
|
201 |
+
# gallery = gr.Gallery(
|
202 |
+
# label="Generated images", show_label=False, elem_id="gallery"
|
203 |
+
# ).style(grid=[1], height="auto")
|
204 |
|
205 |
+
with gr.Column(scale=45):
|
206 |
+
with gr.Tab("Options"):
|
207 |
+
with gr.Group():
|
208 |
+
neg_prompt = gr.Textbox(
|
209 |
+
label="Negative prompt", placeholder="What to exclude from the image")
|
210 |
+
|
211 |
+
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
|
212 |
+
|
213 |
+
with gr.Row():
|
214 |
+
guidance = gr.Slider(
|
215 |
+
label="Guidance scale", value=7.5, maximum=15)
|
216 |
+
steps = gr.Slider(
|
217 |
+
label="Steps", value=25, minimum=2, maximum=75, step=1)
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
width = gr.Slider(
|
221 |
+
label="Width", value=512, minimum=64, maximum=1024, step=8)
|
222 |
+
height = gr.Slider(
|
223 |
+
label="Height", value=512, minimum=64, maximum=1024, step=8)
|
224 |
+
|
225 |
+
seed = gr.Slider(
|
226 |
+
0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
227 |
+
|
228 |
+
with gr.Tab("Image to image"):
|
229 |
+
with gr.Group():
|
230 |
+
image = gr.Image(label="Image", height=256,
|
231 |
+
tool="editor", type="pil")
|
232 |
+
strength = gr.Slider(
|
233 |
+
label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
234 |
+
|
235 |
+
inputs = [model_name, prompt, guidance, steps,
|
236 |
+
width, height, seed, image, strength, neg_prompt]
|
237 |
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
238 |
generate.click(inference, inputs=inputs, outputs=image_out)
|
239 |
|
|
|
247 |
""")
|
248 |
|
249 |
if not is_colab:
|
250 |
+
demo.queue(concurrency_count=1)
|
251 |
+
demo.launch(debug=is_colab, share=is_colab)
|
package.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "playground_diffusion",
|
3 |
+
"version": "1.0.0",
|
4 |
+
"repository": "https://huggingface.co/spaces/riccardogiorato/playground_diffusion",
|
5 |
+
"license": "MIT",
|
6 |
+
"scripts": {
|
7 |
+
"install": "pip install -r requirements.txt"
|
8 |
+
}
|
9 |
+
}
|
yarn.lock
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# THIS IS AN AUTOGENERATED FILE. DO NOT EDIT THIS FILE DIRECTLY.
|
2 |
+
# yarn lockfile v1
|
3 |
+
|
4 |
+
|