File size: 7,386 Bytes
626eca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import logging
from pathlib import Path
from typing import List, Optional, Union

from relik.common.utils import is_package_available

if not is_package_available("fastapi"):
    raise ImportError(
        "FastAPI is not installed. Please install FastAPI with `pip install relik[serve]`."
    )
from fastapi import FastAPI, HTTPException

if not is_package_available("ray"):
    raise ImportError(
        "Ray is not installed. Please install Ray with `pip install relik[serve]`."
    )
from ray import serve

from relik.common.log import get_logger
from relik.inference.data.tokenizers import SpacyTokenizer, WhitespaceTokenizer
from relik.inference.data.window.manager import WindowManager
from relik.inference.serve.backend.utils import (
    RayParameterManager,
    ServerParameterManager,
)
from relik.retriever.data.utils import batch_generator
from relik.retriever.pytorch_modules import GoldenRetriever

logger = get_logger(__name__, level=logging.INFO)

VERSION = {}  # type: ignore
with open(Path(__file__).parent.parent.parent / "version.py", "r") as version_file:
    exec(version_file.read(), VERSION)

# Env variables for server
SERVER_MANAGER = ServerParameterManager()
RAY_MANAGER = RayParameterManager()

app = FastAPI(
    title="Golden Retriever",
    version=VERSION["VERSION"],
    description="Golden Retriever REST API",
)


@serve.deployment(
    ray_actor_options={
        "num_gpus": RAY_MANAGER.num_gpus if SERVER_MANAGER.device == "cuda" else 0
    },
    autoscaling_config={
        "min_replicas": RAY_MANAGER.min_replicas,
        "max_replicas": RAY_MANAGER.max_replicas,
    },
)
@serve.ingress(app)
class GoldenRetrieverServer:
    def __init__(
        self,
        question_encoder: str,
        document_index: str,
        passage_encoder: Optional[str] = None,
        top_k: int = 100,
        device: str = "cpu",
        index_device: Optional[str] = None,
        precision: int = 32,
        index_precision: Optional[int] = None,
        use_faiss: bool = False,
        window_batch_size: int = 32,
        window_size: int = 32,
        window_stride: int = 16,
        split_on_spaces: bool = False,
    ):
        # parameters
        self.question_encoder = question_encoder
        self.passage_encoder = passage_encoder
        self.document_index = document_index
        self.top_k = top_k
        self.device = device
        self.index_device = index_device or device
        self.precision = precision
        self.index_precision = index_precision or precision
        self.use_faiss = use_faiss
        self.window_batch_size = window_batch_size
        self.window_size = window_size
        self.window_stride = window_stride
        self.split_on_spaces = split_on_spaces

        # log stuff for debugging
        logger.info("Initializing GoldenRetrieverServer with parameters:")
        logger.info(f"QUESTION_ENCODER: {self.question_encoder}")
        logger.info(f"PASSAGE_ENCODER: {self.passage_encoder}")
        logger.info(f"DOCUMENT_INDEX: {self.document_index}")
        logger.info(f"TOP_K: {self.top_k}")
        logger.info(f"DEVICE: {self.device}")
        logger.info(f"INDEX_DEVICE: {self.index_device}")
        logger.info(f"PRECISION: {self.precision}")
        logger.info(f"INDEX_PRECISION: {self.index_precision}")
        logger.info(f"WINDOW_BATCH_SIZE: {self.window_batch_size}")
        logger.info(f"SPLIT_ON_SPACES: {self.split_on_spaces}")

        self.retriever = GoldenRetriever(
            question_encoder=self.question_encoder,
            passage_encoder=self.passage_encoder,
            document_index=self.document_index,
            device=self.device,
            index_device=self.index_device,
            index_precision=self.index_precision,
        )
        self.retriever.eval()

        if self.split_on_spaces:
            logger.info("Using WhitespaceTokenizer")
            self.tokenizer = WhitespaceTokenizer()
            # logger.info("Using RegexTokenizer")
            # self.tokenizer = RegexTokenizer()
        else:
            logger.info("Using SpacyTokenizer")
            self.tokenizer = SpacyTokenizer(language="en")

        self.window_manager = WindowManager(tokenizer=self.tokenizer)

    # @serve.batch()
    async def handle_batch(
        self, documents: List[str], document_topics: List[str]
    ) -> List:
        return self.retriever.retrieve(
            documents, text_pair=document_topics, k=self.top_k, precision=self.precision
        )

    @app.post("/api/retrieve")
    async def retrieve_endpoint(
        self,
        documents: Union[str, List[str]],
        document_topics: Optional[Union[str, List[str]]] = None,
    ):
        try:
            # normalize input
            if isinstance(documents, str):
                documents = [documents]
            if document_topics is not None:
                if isinstance(document_topics, str):
                    document_topics = [document_topics]
                assert len(documents) == len(document_topics)
            # get predictions
            return await self.handle_batch(documents, document_topics)
        except Exception as e:
            # log the entire stack trace
            logger.exception(e)
            raise HTTPException(status_code=500, detail=f"Server Error: {e}")

    @app.post("/api/gerbil")
    async def gerbil_endpoint(self, documents: Union[str, List[str]]):
        try:
            # normalize input
            if isinstance(documents, str):
                documents = [documents]

            # output list
            windows_passages = []
            # split documents into windows
            document_windows = [
                window
                for doc_id, document in enumerate(documents)
                for window in self.window_manager(
                    self.tokenizer,
                    document,
                    window_size=self.window_size,
                    stride=self.window_stride,
                    doc_id=doc_id,
                )
            ]

            # get text and topic from document windows and create new list
            model_inputs = [
                (window.text, window.doc_topic) for window in document_windows
            ]

            # batch generator
            for batch in batch_generator(
                model_inputs, batch_size=self.window_batch_size
            ):
                text, text_pair = zip(*batch)
                batch_predictions = await self.handle_batch(text, text_pair)
                windows_passages.extend(
                    [
                        [p.label for p in predictions]
                        for predictions in batch_predictions
                    ]
                )

            # add passage to document windows
            for window, passages in zip(document_windows, windows_passages):
                # clean up passages (remove everything after first <def> tag if present)
                passages = [c.split(" <def>", 1)[0] for c in passages]
                window.window_candidates = passages

            # return document windows
            return document_windows

        except Exception as e:
            # log the entire stack trace
            logger.exception(e)
            raise HTTPException(status_code=500, detail=f"Server Error: {e}")


server = GoldenRetrieverServer.bind(**vars(SERVER_MANAGER))