riccorl's picture
Upload models
8197b11
import os
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Union
import hydra
from omegaconf import OmegaConf
from relik.retriever.indexers.faiss import FaissDocumentIndex
from relik.retriever.pytorch_modules.hf import GoldenRetrieverModel
from rich.pretty import pprint
from relik.common.log import get_console_logger, get_logger
from relik.common.upload import upload
from relik.common.utils import CONFIG_NAME, from_cache, get_callable_from_string
from relik.inference.data.objects import EntitySpan, RelikOutput
from relik.inference.data.tokenizers.spacy_tokenizer import SpacyTokenizer
from relik.inference.data.window.manager import WindowManager
from relik.reader.pytorch_modules.span import RelikReaderForSpanExtraction
from relik.reader.relik_reader import RelikReader
from relik.retriever.data.utils import batch_generator
from relik.retriever.indexers.base import BaseDocumentIndex
from relik.retriever.pytorch_modules.model import GoldenRetriever
logger = get_logger(__name__)
console_logger = get_console_logger()
class Relik:
"""
Relik main class. It is a wrapper around a retriever and a reader.
Args:
retriever (`Optional[GoldenRetriever]`, `optional`):
The retriever to use. If `None`, a retriever will be instantiated from the
provided `question_encoder`, `passage_encoder` and `document_index`.
Defaults to `None`.
question_encoder (`Optional[Union[str, GoldenRetrieverModel]]`, `optional`):
The question encoder to use. If `retriever` is `None`, a retriever will be
instantiated from this parameter. Defaults to `None`.
passage_encoder (`Optional[Union[str, GoldenRetrieverModel]]`, `optional`):
The passage encoder to use. If `retriever` is `None`, a retriever will be
instantiated from this parameter. Defaults to `None`.
document_index (`Optional[Union[str, BaseDocumentIndex]]`, `optional`):
The document index to use. If `retriever` is `None`, a retriever will be
instantiated from this parameter. Defaults to `None`.
reader (`Optional[Union[str, RelikReader]]`, `optional`):
The reader to use. If `None`, a reader will be instantiated from the
provided `reader`. Defaults to `None`.
retriever_device (`str`, `optional`, defaults to `cpu`):
The device to use for the retriever.
"""
def __init__(
self,
retriever: GoldenRetriever | None = None,
question_encoder: str | GoldenRetrieverModel | None = None,
passage_encoder: str | GoldenRetrieverModel | None = None,
document_index: str | BaseDocumentIndex | None = None,
reader: str | RelikReader | None = None,
device: str = "cpu",
retriever_device: str | None = None,
document_index_device: str | None = None,
reader_device: str | None = None,
precision: int = 32,
retriever_precision: int | None = None,
document_index_precision: int | None = None,
reader_precision: int | None = None,
reader_kwargs: dict | None = None,
retriever_kwargs: dict | None = None,
candidates_preprocessing_fn: str | Callable | None = None,
top_k: int | None = None,
window_size: int | None = None,
window_stride: int | None = None,
**kwargs,
) -> None:
# retriever
retriever_device = retriever_device or device
document_index_device = document_index_device or device
retriever_precision = retriever_precision or precision
document_index_precision = document_index_precision or precision
if retriever is None and question_encoder is None:
raise ValueError(
"Either `retriever` or `question_encoder` must be provided"
)
if retriever is None:
self.retriever_kwargs = dict(
question_encoder=question_encoder,
passage_encoder=passage_encoder,
document_index=document_index,
device=retriever_device,
precision=retriever_precision,
index_device=document_index_device,
index_precision=document_index_precision,
)
# overwrite default_retriever_kwargs with retriever_kwargs
self.retriever_kwargs.update(retriever_kwargs or {})
retriever = GoldenRetriever(**self.retriever_kwargs)
retriever.training = False
retriever.eval()
self.retriever = retriever
# reader
self.reader_device = reader_device or device
self.reader_precision = reader_precision or precision
self.reader_kwargs = reader_kwargs
if isinstance(reader, str):
reader_kwargs = reader_kwargs or {}
reader = RelikReaderForSpanExtraction(reader, **reader_kwargs)
self.reader = reader
# windowization stuff
self.tokenizer = SpacyTokenizer(language="en")
self.window_manager: WindowManager | None = None
# candidates preprocessing
# TODO: maybe move this logic somewhere else
candidates_preprocessing_fn = candidates_preprocessing_fn or (lambda x: x)
if isinstance(candidates_preprocessing_fn, str):
candidates_preprocessing_fn = get_callable_from_string(
candidates_preprocessing_fn
)
self.candidates_preprocessing_fn = candidates_preprocessing_fn
# inference params
self.top_k = top_k
self.window_size = window_size
self.window_stride = window_stride
def __call__(
self,
text: Union[str, list],
top_k: Optional[int] = None,
window_size: Optional[int] = None,
window_stride: Optional[int] = None,
retriever_batch_size: Optional[int] = 32,
reader_batch_size: Optional[int] = 32,
return_also_windows: bool = False,
**kwargs,
) -> Union[RelikOutput, list[RelikOutput]]:
"""
Annotate a text with entities.
Args:
text (`str` or `list`):
The text to annotate. If a list is provided, each element of the list
will be annotated separately.
top_k (`int`, `optional`, defaults to `None`):
The number of candidates to retrieve for each window.
window_size (`int`, `optional`, defaults to `None`):
The size of the window. If `None`, the whole text will be annotated.
window_stride (`int`, `optional`, defaults to `None`):
The stride of the window. If `None`, there will be no overlap between windows.
retriever_batch_size (`int`, `optional`, defaults to `None`):
The batch size to use for the retriever. The whole input is the batch for the retriever.
reader_batch_size (`int`, `optional`, defaults to `None`):
The batch size to use for the reader. The whole input is the batch for the reader.
return_also_windows (`bool`, `optional`, defaults to `False`):
Whether to return the windows in the output.
**kwargs:
Additional keyword arguments to pass to the retriever and the reader.
Returns:
`RelikOutput` or `list[RelikOutput]`:
The annotated text. If a list was provided as input, a list of
`RelikOutput` objects will be returned.
"""
if top_k is None:
top_k = self.top_k or 100
if window_size is None:
window_size = self.window_size
if window_stride is None:
window_stride = self.window_stride
if isinstance(text, str):
text = [text]
if window_size is not None:
if self.window_manager is None:
self.window_manager = WindowManager(self.tokenizer)
if window_size == "sentence":
# todo: implement sentence windowizer
raise NotImplementedError("Sentence windowizer not implemented yet")
# if window_size < window_stride:
# raise ValueError(
# f"Window size ({window_size}) must be greater than window stride ({window_stride})"
# )
# window generator
windows = [
window
for doc_id, t in enumerate(text)
for window in self.window_manager.create_windows(
t,
window_size=window_size,
stride=window_stride,
doc_id=doc_id,
)
]
# retrieve candidates first
windows_candidates = []
# TODO: Move batching inside retriever
for batch in batch_generator(windows, batch_size=retriever_batch_size):
retriever_out = self.retriever.retrieve([b.text for b in batch], k=top_k)
windows_candidates.extend(
[[p.label for p in predictions] for predictions in retriever_out]
)
# add passage to the windows
for window, candidates in zip(windows, windows_candidates):
window.window_candidates = [
self.candidates_preprocessing_fn(c) for c in candidates
]
windows = self.reader.read(samples=windows, max_batch_size=reader_batch_size)
windows = self.window_manager.merge_windows(windows)
# transform predictions into RelikOutput objects
output = []
for w in windows:
sample_output = RelikOutput(
text=text[w.doc_id],
labels=sorted(
[
EntitySpan(
start=ss, end=se, label=sl, text=text[w.doc_id][ss:se]
)
for ss, se, sl in w.predicted_window_labels_chars
],
key=lambda x: x.start,
),
)
output.append(sample_output)
if return_also_windows:
for i, sample_output in enumerate(output):
sample_output.windows = [w for w in windows if w.doc_id == i]
# if only one text was provided, return a single RelikOutput object
if len(output) == 1:
return output[0]
return output
@classmethod
def from_pretrained(
cls,
model_name_or_dir: Union[str, os.PathLike],
config_kwargs: Optional[Dict] = None,
config_file_name: str = CONFIG_NAME,
*args,
**kwargs,
) -> "Relik":
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
model_dir = from_cache(
model_name_or_dir,
filenames=[config_file_name],
cache_dir=cache_dir,
force_download=force_download,
)
config_path = model_dir / config_file_name
if not config_path.exists():
raise FileNotFoundError(
f"Model configuration file not found at {config_path}."
)
# overwrite config with config_kwargs
config = OmegaConf.load(config_path)
if config_kwargs is not None:
# TODO: check merging behavior
config = OmegaConf.merge(config, OmegaConf.create(config_kwargs))
# do we want to print the config? I like it
pprint(OmegaConf.to_container(config), console=console_logger, expand_all=True)
# load relik from config
relik = hydra.utils.instantiate(config, *args, **kwargs)
return relik
def save_pretrained(
self,
output_dir: Union[str, os.PathLike],
config: Optional[Dict[str, Any]] = None,
config_file_name: Optional[str] = None,
save_weights: bool = False,
push_to_hub: bool = False,
model_id: Optional[str] = None,
organization: Optional[str] = None,
repo_name: Optional[str] = None,
**kwargs,
):
"""
Save the configuration of Relik to the specified directory as a YAML file.
Args:
output_dir (`str`):
The directory to save the configuration file to.
config (`Optional[Dict[str, Any]]`, `optional`):
The configuration to save. If `None`, the current configuration will be
saved. Defaults to `None`.
config_file_name (`Optional[str]`, `optional`):
The name of the configuration file. Defaults to `config.yaml`.
save_weights (`bool`, `optional`):
Whether to save the weights of the model. Defaults to `False`.
push_to_hub (`bool`, `optional`):
Whether to push the saved model to the hub. Defaults to `False`.
model_id (`Optional[str]`, `optional`):
The id of the model to push to the hub. If `None`, the name of the
directory will be used. Defaults to `None`.
organization (`Optional[str]`, `optional`):
The organization to push the model to. Defaults to `None`.
repo_name (`Optional[str]`, `optional`):
The name of the repository to push the model to. Defaults to `None`.
**kwargs:
Additional keyword arguments to pass to `OmegaConf.save`.
"""
if config is None:
# create a default config
config = {
"_target_": f"{self.__class__.__module__}.{self.__class__.__name__}"
}
if self.retriever is not None:
if self.retriever.question_encoder is not None:
config[
"question_encoder"
] = self.retriever.question_encoder.name_or_path
if self.retriever.passage_encoder is not None:
config[
"passage_encoder"
] = self.retriever.passage_encoder.name_or_path
if self.retriever.document_index is not None:
config["document_index"] = self.retriever.document_index.name_or_dir
if self.reader is not None:
config["reader"] = self.reader.model_path
config["retriever_kwargs"] = self.retriever_kwargs
config["reader_kwargs"] = self.reader_kwargs
# expand the fn as to be able to save it and load it later
config[
"candidates_preprocessing_fn"
] = f"{self.candidates_preprocessing_fn.__module__}.{self.candidates_preprocessing_fn.__name__}"
# these are model-specific and should be saved
config["top_k"] = self.top_k
config["window_size"] = self.window_size
config["window_stride"] = self.window_stride
config_file_name = config_file_name or CONFIG_NAME
# create the output directory
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
logger.info(f"Saving relik config to {output_dir / config_file_name}")
# pretty print the config
pprint(config, console=console_logger, expand_all=True)
OmegaConf.save(config, output_dir / config_file_name)
if save_weights:
model_id = model_id or output_dir.name
retriever_model_id = model_id + "-retriever"
# save weights
logger.info(f"Saving retriever to {output_dir / retriever_model_id}")
self.retriever.save_pretrained(
output_dir / retriever_model_id,
question_encoder_name=retriever_model_id + "-question-encoder",
passage_encoder_name=retriever_model_id + "-passage-encoder",
document_index_name=retriever_model_id + "-index",
push_to_hub=push_to_hub,
organization=organization,
repo_name=repo_name,
**kwargs,
)
reader_model_id = model_id + "-reader"
logger.info(f"Saving reader to {output_dir / reader_model_id}")
self.reader.save_pretrained(
output_dir / reader_model_id,
push_to_hub=push_to_hub,
organization=organization,
repo_name=repo_name,
**kwargs,
)
if push_to_hub:
# push to hub
logger.info(f"Pushing to hub")
model_id = model_id or output_dir.name
upload(output_dir, model_id, organization=organization, repo_name=repo_name)
def main():
from pprint import pprint
document_index = FaissDocumentIndex.from_pretrained(
"/root/relik-spaces/models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index",
config_kwargs={"_target_": "relik.retriever.indexers.faiss.FaissDocumentIndex", "index_type": "IVFx,Flat"},
)
relik = Relik(
question_encoder="/root/relik-spaces/models/relik-retriever-small-aida-blink-pretrain-omniencoder/question_encoder",
document_index=document_index,
reader="/root/relik-spaces/models/relik-reader-aida-deberta-small",
device="cuda",
precision=16,
top_k=100,
window_size=32,
window_stride=16,
candidates_preprocessing_fn="relik.inference.preprocessing.wikipedia_title_and_openings_preprocessing",
)
input_text = """
Bernie Ecclestone, the former boss of Formula One, has admitted fraud after failing to declare more than £400m held in a trust in Singapore.
The 92-year-old billionaire did not disclose the trust to the government in July 2015.
Appearing at Southwark Crown Court on Thursday, he told the judge "I plead guilty" after having previously pleaded not guilty.
Ecclestone had been due to go on trial next month.
"""
preds = relik(input_text)
pprint(preds)
if __name__ == "__main__":
main()