relik-entity-linking / relik /reader /relik_reader_predictor.py
riccorl's picture
first commit
626eca0
import logging
from typing import Iterable, Iterator, List, Optional
import hydra
import torch
from lightning.pytorch.utilities import move_data_to_device
from torch.utils.data import DataLoader
from tqdm import tqdm
from relik.reader.data.patches import merge_patches_predictions
from relik.reader.data.relik_reader_sample import (
RelikReaderSample,
load_relik_reader_samples,
)
from relik.reader.relik_reader_core import RelikReaderCoreModel
from relik.reader.utils.special_symbols import NME_SYMBOL
logger = logging.getLogger(__name__)
def convert_tokens_to_char_annotations(
sample: RelikReaderSample, remove_nmes: bool = False
):
char_annotations = set()
for (
predicted_entity,
predicted_spans,
) in sample.predicted_window_labels.items():
if predicted_entity == NME_SYMBOL and remove_nmes:
continue
for span_start, span_end in predicted_spans:
span_start = sample.token2char_start[str(span_start)]
span_end = sample.token2char_end[str(span_end)]
char_annotations.add((span_start, span_end, predicted_entity))
char_probs_annotations = dict()
for (
span_start,
span_end,
), candidates_probs in sample.span_title_probabilities.items():
span_start = sample.token2char_start[str(span_start)]
span_end = sample.token2char_end[str(span_end)]
char_probs_annotations[(span_start, span_end)] = {
title for title, _ in candidates_probs
}
sample.predicted_window_labels_chars = char_annotations
sample.probs_window_labels_chars = char_probs_annotations
class RelikReaderPredictor:
def __init__(
self,
relik_reader_core: RelikReaderCoreModel,
dataset_conf: Optional[dict] = None,
predict_nmes: bool = False,
) -> None:
self.relik_reader_core = relik_reader_core
self.dataset_conf = dataset_conf
self.predict_nmes = predict_nmes
if self.dataset_conf is not None:
# instantiate dataset
self.dataset = hydra.utils.instantiate(
dataset_conf,
dataset_path=None,
samples=None,
)
def predict(
self,
path: Optional[str],
samples: Optional[Iterable[RelikReaderSample]],
dataset_conf: Optional[dict],
token_batch_size: int = 1024,
progress_bar: bool = False,
**kwargs,
) -> List[RelikReaderSample]:
annotated_samples = list(
self._predict(path, samples, dataset_conf, token_batch_size, progress_bar)
)
for sample in annotated_samples:
merge_patches_predictions(sample)
convert_tokens_to_char_annotations(
sample, remove_nmes=not self.predict_nmes
)
return annotated_samples
def _predict(
self,
path: Optional[str],
samples: Optional[Iterable[RelikReaderSample]],
dataset_conf: dict,
token_batch_size: int = 1024,
progress_bar: bool = False,
**kwargs,
) -> Iterator[RelikReaderSample]:
assert (
path is not None or samples is not None
), "Either predict on a path or on an iterable of samples"
samples = load_relik_reader_samples(path) if samples is None else samples
# setup infrastructure to re-yield in order
def samples_it():
for i, sample in enumerate(samples):
assert sample._mixin_prediction_position is None
sample._mixin_prediction_position = i
yield sample
next_prediction_position = 0
position2predicted_sample = {}
# instantiate dataset
if getattr(self, "dataset", None) is not None:
dataset = self.dataset
dataset.samples = samples_it()
dataset.tokens_per_batch = token_batch_size
else:
dataset = hydra.utils.instantiate(
dataset_conf,
dataset_path=None,
samples=samples_it(),
tokens_per_batch=token_batch_size,
)
# instantiate dataloader
iterator = DataLoader(dataset, batch_size=None, num_workers=0, shuffle=False)
if progress_bar:
iterator = tqdm(iterator, desc="Predicting")
model_device = next(self.relik_reader_core.parameters()).device
with torch.inference_mode():
for batch in iterator:
# do batch predict
with torch.autocast(
"cpu" if model_device == torch.device("cpu") else "cuda"
):
batch = move_data_to_device(batch, model_device)
batch_out = self.relik_reader_core.batch_predict(**batch)
# update prediction position position
for sample in batch_out:
if sample._mixin_prediction_position >= next_prediction_position:
position2predicted_sample[
sample._mixin_prediction_position
] = sample
# yield
while next_prediction_position in position2predicted_sample:
yield position2predicted_sample[next_prediction_position]
del position2predicted_sample[next_prediction_position]
next_prediction_position += 1
if len(position2predicted_sample) > 0:
logger.warning(
"It seems samples have been discarded in your dataset. "
"This means that you WON'T have a prediction for each input sample. "
"Prediction order will also be partially disrupted"
)
for k, v in sorted(position2predicted_sample.items(), key=lambda x: x[0]):
yield v
if progress_bar:
iterator.close()