Spaces:
Sleeping
Sleeping
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import json | |
import logging | |
from datetime import datetime | |
import pandas as pd | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
# Convert ISO 8601 dates to datetime objects for comparison | |
def parse_iso8601_datetime(date_str): | |
if date_str.endswith('Z'): | |
date_str = date_str[:-1] + '+00:00' | |
return datetime.fromisoformat(date_str) | |
def parse_datetime(datetime_str): | |
formats = [ | |
"%Y-%m-%dT%H-%M-%S.%f", # Format with dashes | |
"%Y-%m-%dT%H:%M:%S.%f", # Standard format with colons | |
"%Y-%m-%dT%H %M %S.%f", # Spaces as separator | |
] | |
for fmt in formats: | |
try: | |
return datetime.strptime(datetime_str, fmt) | |
except ValueError: | |
continue | |
# in rare cases set unix start time for files with incorrect time (legacy files) | |
logging.error(f"No valid date format found for: {datetime_str}") | |
return datetime(1970, 1, 1) | |
def load_json_data(file_path): | |
"""Safely load JSON data from a file.""" | |
try: | |
with open(file_path, "r") as file: | |
return json.load(file) | |
except json.JSONDecodeError: | |
print(f"Error reading JSON from {file_path}") | |
return None # Or raise an exception | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
column_map = { | |
"T": "T", | |
"model": "Model", | |
"type": "Model Type", | |
"size_range": "Size Range", | |
"complete": "Complete", | |
"instruct": "Instruct", | |
"average": "Average", | |
"elo_mle": "Elo Rating", | |
"link": "Link", | |
"act_param": "#Act Params (B)", | |
"size": "#Params (B)", | |
"moe": "MoE", | |
# "lazy": "Lazy", | |
"openness": "Openness", | |
# "direct_complete": "Direct Completion", | |
} | |
type_map = { | |
"🔶": "🔶 Chat Models (RLHF, DPO, IFT, ...)", | |
"🟢": "🟢 Base Models" | |
} | |
moe_map = { | |
True: "MoE", | |
False: "Dense" | |
} | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
dummy: bool = False | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append(["T", ColumnContent, ColumnContent(column_map["T"], "str", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent(column_map["model"], "markdown", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["type", ColumnContent, ColumnContent(column_map["type"], "str", False, True)]) | |
auto_eval_column_dict.append(["size_range", ColumnContent, ColumnContent(column_map["size_range"], "str", False, True)]) | |
# Scores | |
auto_eval_column_dict.append(["complete", ColumnContent, ColumnContent(column_map["complete"], "number", True)]) | |
auto_eval_column_dict.append(["instruct", ColumnContent, ColumnContent(column_map["instruct"], "number", True)]) | |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent(column_map["average"], "number", True)]) | |
auto_eval_column_dict.append(["elo_mle", ColumnContent, ColumnContent(column_map["elo_mle"], "number", True)]) | |
# Model information | |
auto_eval_column_dict.append(["act_param", ColumnContent, ColumnContent(column_map["act_param"], "number", True)]) | |
auto_eval_column_dict.append(["link", ColumnContent, ColumnContent(column_map["link"], "str", False, True)]) | |
auto_eval_column_dict.append(["size", ColumnContent, ColumnContent(column_map["size"], "number", False)]) | |
# auto_eval_column_dict.append(["lazy", ColumnContent, ColumnContent(column_map["lazy"], "bool", False, True)]) | |
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent(column_map["moe"], "str", False, True)]) | |
auto_eval_column_dict.append(["openness", ColumnContent, ColumnContent(column_map["openness"], "str", False, True)]) | |
# auto_eval_column_dict.append(["direct_complete", ColumnContent, ColumnContent(column_map["direct_complete"], "bool", False)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
class EvalQueueColumn: # Queue column | |
model_link = ColumnContent("link", "markdown", True) | |
model_name = ColumnContent("model", "str", True) | |
class ModelDetails: | |
name: str | |
symbol: str = "" # emoji, only for the model type | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn)] | |
TYPES = [c.type for c in fields(AutoEvalColumn)] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
NUMERIC_INTERVALS = { | |
"?": pd.Interval(-1, 0, closed="right"), | |
"~1.5": pd.Interval(0, 2, closed="right"), | |
"~3": pd.Interval(2, 4, closed="right"), | |
"~7": pd.Interval(4, 9, closed="right"), | |
"~13": pd.Interval(9, 20, closed="right"), | |
"~35": pd.Interval(20, 45, closed="right"), | |
"~60": pd.Interval(45, 70, closed="right"), | |
"70+": pd.Interval(70, 10000, closed="right"), | |
} | |