Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Step 1: Load the fine-tuned model and tokenizer | |
MODEL_NAME = "ridahabbash/AccR4" # Replace with your model's Hub ID | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) | |
# Step 2: Define the prediction function | |
def generate_report(prompt): | |
# Tokenize input | |
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True) | |
# Generate output | |
outputs = model.generate(**inputs, max_length=128) | |
# Decode and return the result | |
report = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return report | |
# Step 3: Create the Streamlit interface | |
st.title("Accounting Report Generator") | |
st.markdown("Enter a ledger entry below, and the model will generate a report.") | |
# Input textbox | |
prompt = st.text_area("Ledger Entry", placeholder="Enter ledger details here...") | |
# Generate button | |
if st.button("Generate Report"): | |
if prompt.strip() == "": | |
st.error("Please enter a valid ledger entry.") | |
else: | |
# Generate report | |
with st.spinner("Generating report..."): | |
report = generate_report(prompt) | |
# Display the report | |
st.success("Report generated successfully!") | |
st.subheader("Generated Report:") | |
st.write(report) | |