Spaces:
Sleeping
Sleeping
Create transformers.py
Browse files- transformers.py +43 -0
transformers.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
# Step 1: Load pre-trained model and tokenizer
|
5 |
+
model_name = "google/mt5-base" # Example: T5 model
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Step 2: Load dataset
|
10 |
+
dataset = load_dataset("csv", data_files="accounting_data.jsonl")
|
11 |
+
|
12 |
+
# Step 3: Preprocess the dataset
|
13 |
+
def preprocess_function(examples):
|
14 |
+
inputs = [f"Generate report: {ledger}" for ledger in examples["prompt"]]
|
15 |
+
targets = examples["completion"]
|
16 |
+
model_inputs = tokenizer(inputs, max_length=512, truncation=True)
|
17 |
+
labels = tokenizer(targets, max_length=128, truncation=True)
|
18 |
+
model_inputs["labels"] = labels["input_ids"]
|
19 |
+
return model_inputs
|
20 |
+
|
21 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
22 |
+
|
23 |
+
# Step 4: Define training arguments
|
24 |
+
training_args = TrainingArguments(
|
25 |
+
output_dir="./results",
|
26 |
+
evaluation_strategy="epoch",
|
27 |
+
learning_rate=5e-5,
|
28 |
+
per_device_train_batch_size=8,
|
29 |
+
num_train_epochs=3,
|
30 |
+
save_total_limit=3,
|
31 |
+
predict_with_generate=True,
|
32 |
+
)
|
33 |
+
|
34 |
+
# Step 5: Initialize Trainer
|
35 |
+
trainer = Trainer(
|
36 |
+
model=model,
|
37 |
+
args=training_args,
|
38 |
+
train_dataset=tokenized_datasets["train"],
|
39 |
+
eval_dataset=tokenized_datasets["test"],
|
40 |
+
)
|
41 |
+
|
42 |
+
# Step 6: Train the model
|
43 |
+
trainer.train()
|