import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Step 1: Load the fine-tuned model and tokenizer MODEL_NAME = "ridahabbash/AccR4" # Replace with your model's Hub ID tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) # Step 2: Define the prediction function def generate_report(prompt): # Tokenize input inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True) # Generate output outputs = model.generate(**inputs, max_length=128) # Decode and return the result report = tokenizer.decode(outputs[0], skip_special_tokens=True) return report # Step 3: Create the Streamlit interface st.title("Accounting Report Generator") st.markdown("Enter a ledger entry below, and the model will generate a report.") # Input textbox prompt = st.text_area("Ledger Entry", placeholder="Enter ledger details here...") # Generate button if st.button("Generate Report"): if prompt.strip() == "": st.error("Please enter a valid ledger entry.") else: # Generate report with st.spinner("Generating report..."): report = generate_report(prompt) # Display the report st.success("Report generated successfully!") st.subheader("Generated Report:") st.write(report)