Spaces:
Paused
Paused
File size: 769 Bytes
6611bfa 06fd5a4 3e31d99 6611bfa 06fd5a4 4bb934d 6611bfa 8c67b0b 6611bfa 06fd5a4 6611bfa 8c67b0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import gradio as gr
from transformers import ViTForImageClassification, ViTProcessor
# Load the model and processor
model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
processor = ViTProcessor.from_pretrained("google/vit-base-patch16-224")
def predict_image(img):
inputs = processor(img, return_tensors="pt")
outputs = model(**inputs)
predictions = outputs.logits.argmax(-1)
return model.config.id2label[predictions.item()]
# Create the interface
iface = gr.Interface(
fn=predict_image,
inputs=gr.Image(shape=(224, 224)),
outputs="text",
live=True,
capture_session=True,
title="Image recognition",
description="Upload an image you want to categorize.",
theme="Monochrome"
)
iface.launch() |