Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,29 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import ViTForImageClassification
|
|
|
|
|
|
|
3 |
|
4 |
-
# Load the model
|
5 |
model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def predict_image(img):
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
return model.config.id2label[predictions.item()]
|
13 |
|
14 |
# Create the interface
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import ViTForImageClassification
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import torchvision.transforms as transforms
|
6 |
|
7 |
+
# Load the model
|
8 |
model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
|
9 |
+
model.eval()
|
10 |
+
|
11 |
+
# Define the image preprocessing pipeline
|
12 |
+
transform = transforms.Compose([
|
13 |
+
transforms.Resize((224, 224)),
|
14 |
+
transforms.ToTensor(),
|
15 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
16 |
+
])
|
17 |
|
18 |
def predict_image(img):
|
19 |
+
# Apply the transformations
|
20 |
+
tensor_img = transform(img).unsqueeze(0)
|
21 |
+
|
22 |
+
# Make prediction
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = model(tensor_img)
|
25 |
+
predictions = outputs.logits.argmax(-1)
|
26 |
+
|
27 |
return model.config.id2label[predictions.item()]
|
28 |
|
29 |
# Create the interface
|