import gradio as gr from transformers import ViTForImageClassification, ViTProcessor # Load the model and processor model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224") processor = ViTProcessor.from_pretrained("google/vit-base-patch16-224") def predict_image(img): inputs = processor(img, return_tensors="pt") outputs = model(**inputs) predictions = outputs.logits.argmax(-1) return model.config.id2label[predictions.item()] # Create the interface iface = gr.Interface( fn=predict_image, inputs=gr.Image(shape=(224, 224)), outputs="text", live=True, capture_session=True, title="Image recognition", description="Upload an image you want to categorize.", theme="Monochrome" ) iface.launch()