antfraia commited on
Commit
03e8ac2
·
1 Parent(s): 94ad82a

Upload 6 files

Browse files
Files changed (6) hide show
  1. .env.example +3 -0
  2. .gitignore +163 -0
  3. README.md +25 -13
  4. chat.py +61 -0
  5. requirements.txt +5 -3
  6. scrape.py +40 -0
.env.example ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ OPENAI_API_KEY=your_api_key
2
+ APIFY_API_TOKEN=your_api_key
3
+ WEBSITE_URL="https://docs.apify.com/platform"
.gitignore ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
161
+
162
+ # Ignore the folder with the vector database's data
163
+ db/
README.md CHANGED
@@ -1,13 +1,25 @@
1
- ---
2
- title: Langchain Test
3
- emoji: 🚀
4
- colorFrom: red
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 3.43.2
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Chat with a website
2
+
3
+ Chat with a website using Apify and ChatGPT.
4
+
5
+ ## Setup
6
+
7
+ Before getting started, be sure to sign up for an [Apify](https://console.apify.com/sign-up) and [OpenAI](https://openai.com/) account and create API keys.
8
+
9
+ To set up and run this project, follow these steps:
10
+
11
+ 1. Install the required packages with `pip`:
12
+ ```
13
+ pip install -r requirements.txt
14
+ ```
15
+ 2. Rename the `.env.example` file to `.env` and replace the variables. Here's an explanation of the variables in the .env file:
16
+
17
+ `OPENAI_API_KEY`: Your OpenAI API key. You can obtain it from your OpenAI account dashboard.
18
+ `APIFY_API_TOKEN`: Your Apify API token. You can obtain it from [Apify settings](https://console.apify.com/account/integrations).
19
+ `WEBSITE_URL`: The full URL of the website you'd like to chat with.
20
+
21
+ 3. Run the `scrape.py` script to scrape the website's data using Apify's [Website content crawler](https://apify.com/apify/website-content-crawler).
22
+ 4. Run the Streamlit chat app, which should default to `http://localhost:8501` and allow you to chat with the website:
23
+ ```
24
+ streamlit run chat.py
25
+ ```
chat.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import streamlit as st
4
+ from dotenv import load_dotenv
5
+ from langchain.callbacks.base import BaseCallbackHandler
6
+ from langchain.chains import ConversationalRetrievalChain
7
+ from langchain.chat_models import ChatOpenAI
8
+ from langchain.embeddings import OpenAIEmbeddings
9
+ from langchain.memory import ConversationBufferMemory
10
+ from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
11
+ from langchain.vectorstores import Chroma
12
+
13
+ load_dotenv()
14
+
15
+ website_url = os.environ.get('WEBSITE_URL', 'a website')
16
+
17
+ st.set_page_config(page_title=f'Chat with {website_url}')
18
+ st.title('Chat with a website')
19
+
20
+ @st.cache_resource(ttl='1h')
21
+ def get_retriever():
22
+ embeddings = OpenAIEmbeddings()
23
+ vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
24
+
25
+ retriever = vectordb.as_retriever(search_type='mmr')
26
+
27
+ return retriever
28
+
29
+ class StreamHandler(BaseCallbackHandler):
30
+ def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ''):
31
+ self.container = container
32
+ self.text = initial_text
33
+
34
+ def on_llm_new_token(self, token: str, **kwargs) -> None:
35
+ self.text += token
36
+ self.container.markdown(self.text)
37
+
38
+ retriever = get_retriever()
39
+
40
+ msgs = StreamlitChatMessageHistory()
41
+ memory = ConversationBufferMemory(memory_key='chat_history', chat_memory=msgs, return_messages=True)
42
+
43
+ llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, streaming=True)
44
+ qa_chain = ConversationalRetrievalChain.from_llm(
45
+ llm, retriever=retriever, memory=memory, verbose=False
46
+ )
47
+
48
+ if st.sidebar.button('Clear message history') or len(msgs.messages) == 0:
49
+ msgs.clear()
50
+ msgs.add_ai_message(f'Ask me anything about {website_url}!')
51
+
52
+ avatars = {'human': 'user', 'ai': 'assistant'}
53
+ for msg in msgs.messages:
54
+ st.chat_message(avatars[msg.type]).write(msg.content)
55
+
56
+ if user_query := st.chat_input(placeholder='Ask me anything!'):
57
+ st.chat_message('user').write(user_query)
58
+
59
+ with st.chat_message('assistant'):
60
+ stream_handler = StreamHandler(st.empty())
61
+ response = qa_chain.run(user_query, callbacks=[stream_handler])
requirements.txt CHANGED
@@ -1,5 +1,7 @@
1
  apify-client
2
- langchain
3
  chromadb
4
- tiktoken
5
- openai
 
 
 
 
1
  apify-client
 
2
  chromadb
3
+ langchain
4
+ openai
5
+ python-dotenv
6
+ streamlit
7
+ tiktoken
scrape.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from apify_client import ApifyClient
4
+ from dotenv import load_dotenv
5
+ from langchain.document_loaders import ApifyDatasetLoader
6
+ from langchain.document_loaders.base import Document
7
+ from langchain.embeddings.openai import OpenAIEmbeddings
8
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
9
+ from langchain.vectorstores import Chroma
10
+
11
+ # Load environment variables from a .env file
12
+ load_dotenv()
13
+
14
+ if __name__ == '__main__':
15
+ apify_client = ApifyClient(os.environ.get('APIFY_API_TOKEN'))
16
+ website_url = os.environ.get('WEBSITE_URL')
17
+ print(f'Extracting data from "{website_url}". Please wait...')
18
+ actor_run_info = apify_client.actor('apify/website-content-crawler').call(
19
+ run_input={'startUrls': [{'url': website_url}]}
20
+ )
21
+ print('Saving data into the vector database. Please wait...')
22
+ loader = ApifyDatasetLoader(
23
+ dataset_id=actor_run_info['defaultDatasetId'],
24
+ dataset_mapping_function=lambda item: Document(
25
+ page_content=item['text'] or '', metadata={'source': item['url']}
26
+ ),
27
+ )
28
+ documents = loader.load()
29
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
30
+ docs = text_splitter.split_documents(documents)
31
+
32
+ embedding = OpenAIEmbeddings()
33
+
34
+ vectordb = Chroma.from_documents(
35
+ documents=docs,
36
+ embedding=embedding,
37
+ persist_directory='db2',
38
+ )
39
+ vectordb.persist()
40
+ print('All done!')