File size: 3,918 Bytes
3e996d0
e6ac219
932e360
46a426c
932e360
036ebf1
0710745
 
 
036ebf1
0710745
 
 
036ebf1
0710745
ef76fa0
0710745
932e360
fce2a17
 
036ebf1
46a426c
ef76fa0
46a426c
036ebf1
46a426c
ef76fa0
46a426c
036ebf1
e6ac219
 
036ebf1
0710745
 
 
036ebf1
 
 
 
0710745
036ebf1
0710745
 
036ebf1
0710745
 
 
 
 
 
036ebf1
 
 
 
 
 
 
 
0710745
036ebf1
0710745
 
 
036ebf1
 
 
 
 
 
0710745
 
ef76fa0
036ebf1
0710745
036ebf1
0710745
 
036ebf1
 
46a426c
036ebf1
46a426c
 
036ebf1
 
46a426c
ef76fa0
 
46a426c
 
fce2a17
ef76fa0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import streamlit as st
import pandas as pd
import requests
from apify_client import ApifyClient

# Function to fetch Google Maps info using the antonces~gmaps actor
def fetch_google_maps_info(website_name):
    apify_client = ApifyClient("apify_api_uz0y556N4IG2aLcESj67kmnGSUpHF12XAkLp")
    run_input = {"searchStringsArray": [website_name]}
    run = apify_client.actor("antonces~gmaps").call(run_input=run_input)
    items = list(apify_client.dataset(run["defaultDatasetId"]).iterate_items())
    return items[0] if items else None

# Function to fetch weather info from OpenWeatherMap API
def fetch_weather_info(lat, lon):
    API_KEY = "91b23cab82ee530b2052c8757e343b0d"
    url = f"https://api.openweathermap.org/data/3.0/onecall?lat={lat}&lon={lon}&exclude=hourly,daily&appid={API_KEY}"
    response = requests.get(url)
    return response.json()

# Function to fetch website content using the antonces~web-scraper-task actor
def fetch_website_content(website_url):
    apify_client = ApifyClient("apify_api_uz0y556N4IG2aLcESj67kmnGSUpHF12XAkLp")
    run_input = {}
    run = apify_client.actor("antonces~web-scraper-task").call(run_input=run_input)
    items = list(apify_client.dataset(run["defaultDatasetId"]).iterate_items())
    return items if items else None

# Streamlit app for Data Visualization
st.title("Data Visualization")

# Input for website or company name
website_name = st.text_input("Enter a website / company name:")

if website_name:
    # Initialize the progress bar
    progress_bar = st.progress(0)
    
    # Fetch Google Maps data
    google_maps_data = fetch_google_maps_info(website_name)
    progress_bar.progress(50)

    if google_maps_data:
        # Display website link
        website_link = google_maps_data.get('website')
        st.text_area("Website Link:", website_link)

        # Display location and fetch weather info
        lat = google_maps_data["location"]["lat"]
        lng = google_maps_data["location"]["lng"]
        st.map(pd.DataFrame({'lat': [lat], 'lon': [lng]}))
        weather_data = fetch_weather_info(lat, lng)
        current_weather = weather_data.get("current", {})
        temp = current_weather.get('temp')
        temp_in_celsius = temp - 273.15
        st.write(f"**Location:** {lat}, {lng}")
        st.write(f"**Temperature:** {temp_in_celsius:.2f}°C")
        st.write(f"**Weather:** {current_weather.get('weather')[0].get('description')}")
        
        # Display Occupancy Data
        st.subheader("Occupancy Data")
        occupancy_data = google_maps_data.get('popularTimesHistogram', {})
        for day, day_data in occupancy_data.items():
            hours = [entry['hour'] for entry in day_data]
            occupancy = [entry['occupancyPercent'] for entry in day_data]
            st.write(day)
            st.bar_chart(pd.Series(occupancy, index=hours))

        # Display Review Count and Distribution
        st.subheader("Review Count and Distribution")
        st.write(f"Total Reviews Count: {google_maps_data['reviewsCount']}")
        review_distribution = google_maps_data.get('reviewsDistribution', {})
        st.bar_chart(pd.Series(review_distribution))
        
        # Display Reviews Table
        st.subheader("Customer Reviews")
        reviews = google_maps_data.get('reviews', [])
        review_df = pd.DataFrame(reviews)
        st.table(review_df[['name', 'text', 'publishAt', 'likesCount', 'stars']])
        
        # Fetch and Display Website Content
        st.subheader("Website Content")
        website_content_data = fetch_website_content(website_link)
        progress_bar.progress(100)
        
        if website_content_data:
            website_df = pd.DataFrame(website_content_data)
            st.table(website_df)
        else:
            st.write("Unable to retrieve website content.")
    else:
        st.write("No results found for this website / company name on Google Maps.")