chatwebsite_2 / app.py
antfraia's picture
Update app.py
2900706
raw
history blame
3.85 kB
# Combined Imports
import os
import streamlit as st
from dotenv import load_dotenv
from apify_client import ApifyClient
from langchain.callbacks.base import BaseCallbackHandler
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import ApifyDatasetLoader
from langchain.document_loaders.base import Document
from langchain.embeddings import OpenAIEmbeddings
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
# Environment variables and configuration
load_dotenv()
WEBSITE_URL = os.environ.get('WEBSITE_URL', 'a website')
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
APIFY_API_TOKEN = os.environ.get('APIFY_API_TOKEN')
# Scraper Functionality
def scrape_website():
apify_client = ApifyClient(APIFY_API_TOKEN)
st.write(f'Extracting data from "{WEBSITE_URL}". Please wait...')
actor_run_info = apify_client.actor('apify/website-content-crawler').call(
run_input={'startUrls': [{'url': WEBSITE_URL}]}
)
st.write('Saving data into the vector database. Please wait...')
loader = ApifyDatasetLoader(
dataset_id=actor_run_info['defaultDatasetId'],
dataset_mapping_function=lambda item: Document(
page_content=item['text'] or '', metadata={'source': item['url']}
),
)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
docs = text_splitter.split_documents(documents)
embedding = OpenAIEmbeddings(api_key=OPENAI_API_KEY)
vectordb = Chroma.from_documents(
documents=docs,
embedding=embedding,
persist_directory='db2',
)
vectordb.persist()
st.write('All done!')
# Chat Functionality
def chat_with_website():
st.set_page_config(page_title=f'Chat with {WEBSITE_URL}')
st.title('Chat with a website')
retriever = get_retriever()
msgs = StreamlitChatMessageHistory()
memory = ConversationBufferMemory(memory_key='chat_history', chat_memory=msgs, return_messages=True)
llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, streaming=True)
qa_chain = ConversationalRetrievalChain.from_llm(
llm, retriever=retriever, memory=memory, verbose=False
)
if st.sidebar.button('Clear message history') or len(msgs.messages) == 0:
msgs.clear()
msgs.add_ai_message(f'Ask me anything about {WEBSITE_URL}!')
avatars = {'human': 'user', 'ai': 'assistant'}
for msg in msgs.messages:
st.chat_message(avatars[msg.type]).write(msg.content)
if user_query := st.chat_input(placeholder='Ask me anything!'):
st.chat_message('user').write(user_query)
with st.chat_message('assistant'):
stream_handler = StreamHandler(st.empty())
response = qa_chain.run(user_query, callbacks=[stream_handler])
@st.cache_resource(ttl='1h')
def get_retriever():
embeddings = OpenAIEmbeddings()
vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb.as_retriever(search_type='mmr')
return retriever
class StreamHandler(BaseCallbackHandler):
def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ''):
self.container = container
self.text = initial_text
def on_llm_new_token(self, token: str, **kwargs) -> None:
self.text += token
self.container.markdown(self.text)
# Main App Flow
if st.sidebar.button("Scrape a new website"):
scrape_website()
if st.sidebar.button("Chat with scraped website"):
chat_with_website()