antfraia commited on
Commit
a110b8e
·
1 Parent(s): 6632bc8

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +61 -0
  2. requirements.txt +7 -0
  3. scrape.py +40 -0
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import streamlit as st
4
+ from dotenv import load_dotenv
5
+ from langchain.callbacks.base import BaseCallbackHandler
6
+ from langchain.chains import ConversationalRetrievalChain
7
+ from langchain.chat_models import ChatOpenAI
8
+ from langchain.embeddings import OpenAIEmbeddings
9
+ from langchain.memory import ConversationBufferMemory
10
+ from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
11
+ from langchain.vectorstores import Chroma
12
+
13
+ load_dotenv()
14
+
15
+ website_url = os.environ.get('WEBSITE_URL', 'a website')
16
+
17
+ st.set_page_config(page_title=f'Chat with {website_url}')
18
+ st.title('Chat with a website')
19
+
20
+ @st.cache_resource(ttl='1h')
21
+ def get_retriever():
22
+ embeddings = OpenAIEmbeddings()
23
+ vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
24
+
25
+ retriever = vectordb.as_retriever(search_type='mmr')
26
+
27
+ return retriever
28
+
29
+ class StreamHandler(BaseCallbackHandler):
30
+ def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ''):
31
+ self.container = container
32
+ self.text = initial_text
33
+
34
+ def on_llm_new_token(self, token: str, **kwargs) -> None:
35
+ self.text += token
36
+ self.container.markdown(self.text)
37
+
38
+ retriever = get_retriever()
39
+
40
+ msgs = StreamlitChatMessageHistory()
41
+ memory = ConversationBufferMemory(memory_key='chat_history', chat_memory=msgs, return_messages=True)
42
+
43
+ llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, streaming=True)
44
+ qa_chain = ConversationalRetrievalChain.from_llm(
45
+ llm, retriever=retriever, memory=memory, verbose=False
46
+ )
47
+
48
+ if st.sidebar.button('Clear message history') or len(msgs.messages) == 0:
49
+ msgs.clear()
50
+ msgs.add_ai_message(f'Ask me anything about {website_url}!')
51
+
52
+ avatars = {'human': 'user', 'ai': 'assistant'}
53
+ for msg in msgs.messages:
54
+ st.chat_message(avatars[msg.type]).write(msg.content)
55
+
56
+ if user_query := st.chat_input(placeholder='Ask me anything!'):
57
+ st.chat_message('user').write(user_query)
58
+
59
+ with st.chat_message('assistant'):
60
+ stream_handler = StreamHandler(st.empty())
61
+ response = qa_chain.run(user_query, callbacks=[stream_handler])
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ apify-client
2
+ chromadb
3
+ langchain
4
+ openai
5
+ python-dotenv
6
+ streamlit
7
+ tiktoken
scrape.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from apify_client import ApifyClient
4
+ from dotenv import load_dotenv
5
+ from langchain.document_loaders import ApifyDatasetLoader
6
+ from langchain.document_loaders.base import Document
7
+ from langchain.embeddings.openai import OpenAIEmbeddings
8
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
9
+ from langchain.vectorstores import Chroma
10
+
11
+ # Load environment variables from a .env file
12
+ load_dotenv()
13
+
14
+ if __name__ == '__main__':
15
+ apify_client = ApifyClient(os.environ.get('APIFY_API_TOKEN'))
16
+ website_url = os.environ.get('WEBSITE_URL')
17
+ print(f'Extracting data from "{website_url}". Please wait...')
18
+ actor_run_info = apify_client.actor('apify/website-content-crawler').call(
19
+ run_input={'startUrls': [{'url': website_url}]}
20
+ )
21
+ print('Saving data into the vector database. Please wait...')
22
+ loader = ApifyDatasetLoader(
23
+ dataset_id=actor_run_info['defaultDatasetId'],
24
+ dataset_mapping_function=lambda item: Document(
25
+ page_content=item['text'] or '', metadata={'source': item['url']}
26
+ ),
27
+ )
28
+ documents = loader.load()
29
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
30
+ docs = text_splitter.split_documents(documents)
31
+
32
+ embedding = OpenAIEmbeddings()
33
+
34
+ vectordb = Chroma.from_documents(
35
+ documents=docs,
36
+ embedding=embedding,
37
+ persist_directory='db2',
38
+ )
39
+ vectordb.persist()
40
+ print('All done!')