Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,39 @@
|
|
1 |
-
# Combined Imports
|
2 |
import os
|
3 |
import streamlit as st
|
4 |
-
from dotenv import load_dotenv
|
5 |
from apify_client import ApifyClient
|
|
|
6 |
from langchain.callbacks.base import BaseCallbackHandler
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain.chat_models import ChatOpenAI
|
9 |
-
from langchain.document_loaders import ApifyDatasetLoader
|
10 |
-
from langchain.document_loaders.base import Document
|
11 |
from langchain.embeddings import OpenAIEmbeddings
|
12 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
13 |
from langchain.memory import ConversationBufferMemory
|
14 |
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
|
15 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
from langchain.vectorstores import Chroma
|
|
|
|
|
|
|
17 |
|
18 |
-
# Environment variables and configuration
|
19 |
load_dotenv()
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
APIFY_API_TOKEN = os.environ.get('APIFY_API_TOKEN')
|
23 |
|
24 |
-
|
25 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
apify_client = ApifyClient(APIFY_API_TOKEN)
|
27 |
-
st.write(f'Extracting data from "{WEBSITE_URL}". Please wait...')
|
28 |
actor_run_info = apify_client.actor('apify/website-content-crawler').call(
|
29 |
-
run_input={'startUrls': [{'url':
|
30 |
)
|
31 |
-
st.write('Saving data into the vector database. Please wait...')
|
32 |
loader = ApifyDatasetLoader(
|
33 |
dataset_id=actor_run_info['defaultDatasetId'],
|
34 |
dataset_mapping_function=lambda item: Document(
|
@@ -38,49 +43,16 @@ def scrape_website():
|
|
38 |
documents = loader.load()
|
39 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
|
40 |
docs = text_splitter.split_documents(documents)
|
41 |
-
|
42 |
-
embedding = OpenAIEmbeddings(api_key=OPENAI_API_KEY)
|
43 |
vectordb = Chroma.from_documents(
|
44 |
documents=docs,
|
45 |
embedding=embedding,
|
46 |
persist_directory='db2',
|
47 |
)
|
48 |
vectordb.persist()
|
49 |
-
st.write('All done!')
|
50 |
-
|
51 |
-
# Chat Functionality
|
52 |
-
def chat_with_website():
|
53 |
-
st.set_page_config(page_title=f'Chat with {WEBSITE_URL}')
|
54 |
-
st.title('Chat with a website')
|
55 |
-
retriever = get_retriever()
|
56 |
-
msgs = StreamlitChatMessageHistory()
|
57 |
-
memory = ConversationBufferMemory(memory_key='chat_history', chat_memory=msgs, return_messages=True)
|
58 |
-
|
59 |
-
llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, streaming=True)
|
60 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
61 |
-
llm, retriever=retriever, memory=memory, verbose=False
|
62 |
-
)
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
msgs.add_ai_message(f'Ask me anything about {WEBSITE_URL}!')
|
67 |
-
|
68 |
-
avatars = {'human': 'user', 'ai': 'assistant'}
|
69 |
-
for msg in msgs.messages:
|
70 |
-
st.chat_message(avatars[msg.type]).write(msg.content)
|
71 |
-
|
72 |
-
if user_query := st.chat_input(placeholder='Ask me anything!'):
|
73 |
-
st.chat_message('user').write(user_query)
|
74 |
-
with st.chat_message('assistant'):
|
75 |
-
stream_handler = StreamHandler(st.empty())
|
76 |
-
response = qa_chain.run(user_query, callbacks=[stream_handler])
|
77 |
-
|
78 |
-
@st.cache_resource(ttl='1h')
|
79 |
-
def get_retriever():
|
80 |
-
embeddings = OpenAIEmbeddings()
|
81 |
-
vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
|
82 |
-
retriever = vectordb.as_retriever(search_type='mmr')
|
83 |
-
return retriever
|
84 |
|
85 |
class StreamHandler(BaseCallbackHandler):
|
86 |
def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ''):
|
@@ -91,9 +63,25 @@ class StreamHandler(BaseCallbackHandler):
|
|
91 |
self.text += token
|
92 |
self.container.markdown(self.text)
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
3 |
from apify_client import ApifyClient
|
4 |
+
from dotenv import load_dotenv
|
5 |
from langchain.callbacks.base import BaseCallbackHandler
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
from langchain.chat_models import ChatOpenAI
|
|
|
|
|
8 |
from langchain.embeddings import OpenAIEmbeddings
|
|
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
|
|
|
11 |
from langchain.vectorstores import Chroma
|
12 |
+
from langchain.document_loaders import ApifyDatasetLoader
|
13 |
+
from langchain.document_loaders.base import Document
|
14 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
|
|
|
16 |
load_dotenv()
|
17 |
+
|
18 |
+
st.set_page_config(page_title='Chat with a website')
|
19 |
+
|
20 |
+
website_url = st.text_input("Please enter the website URL to scrape:", value="https://www.example.com/")
|
21 |
+
st.title(f'Chat with {website_url}')
|
22 |
+
|
23 |
APIFY_API_TOKEN = os.environ.get('APIFY_API_TOKEN')
|
24 |
|
25 |
+
@st.cache_resource(ttl='1h')
|
26 |
+
def get_retriever():
|
27 |
+
embeddings = OpenAIEmbeddings()
|
28 |
+
vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
|
29 |
+
retriever = vectordb.as_retriever(search_type='mmr')
|
30 |
+
return retriever
|
31 |
+
|
32 |
+
def scrape_website(website_url: str):
|
33 |
apify_client = ApifyClient(APIFY_API_TOKEN)
|
|
|
34 |
actor_run_info = apify_client.actor('apify/website-content-crawler').call(
|
35 |
+
run_input={'startUrls': [{'url': website_url}]}
|
36 |
)
|
|
|
37 |
loader = ApifyDatasetLoader(
|
38 |
dataset_id=actor_run_info['defaultDatasetId'],
|
39 |
dataset_mapping_function=lambda item: Document(
|
|
|
43 |
documents = loader.load()
|
44 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
|
45 |
docs = text_splitter.split_documents(documents)
|
46 |
+
embedding = OpenAIEmbeddings()
|
|
|
47 |
vectordb = Chroma.from_documents(
|
48 |
documents=docs,
|
49 |
embedding=embedding,
|
50 |
persist_directory='db2',
|
51 |
)
|
52 |
vectordb.persist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
if st.button("Start Scraping"):
|
55 |
+
scrape_website(website_url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
class StreamHandler(BaseCallbackHandler):
|
58 |
def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ''):
|
|
|
63 |
self.text += token
|
64 |
self.container.markdown(self.text)
|
65 |
|
66 |
+
retriever = get_retriever()
|
67 |
+
msgs = StreamlitChatMessageHistory()
|
68 |
+
memory = ConversationBufferMemory(memory_key='chat_history', chat_memory=msgs, return_messages=True)
|
69 |
+
llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, streaming=True)
|
70 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
71 |
+
llm, retriever=retriever, memory=memory, verbose=False
|
72 |
+
)
|
73 |
+
|
74 |
+
if st.sidebar.button('Clear message history') or len(msgs.messages) == 0:
|
75 |
+
msgs.clear()
|
76 |
+
msgs.add_ai_message(f'Ask me anything about {website_url}!')
|
77 |
+
|
78 |
+
avatars = {'human': 'user', 'ai': 'assistant'}
|
79 |
+
for msg in msgs.messages:
|
80 |
+
st.chat_message(avatars[msg.type]).write(msg.content)
|
81 |
+
|
82 |
+
if user_query := st.chat_input(placeholder='Ask me anything!'):
|
83 |
+
st.chat_message('user').write(user_query)
|
84 |
|
85 |
+
with st.chat_message('assistant'):
|
86 |
+
stream_handler = StreamHandler(st.empty())
|
87 |
+
response = qa_chain.run(user_query, callbacks=[stream_handler])
|