# Combined Imports import os import streamlit as st from dotenv import load_dotenv from apify_client import ApifyClient from langchain.callbacks.base import BaseCallbackHandler from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI from langchain.document_loaders import ApifyDatasetLoader from langchain.document_loaders.base import Document from langchain.embeddings import OpenAIEmbeddings from langchain.embeddings.openai import OpenAIEmbeddings from langchain.memory import ConversationBufferMemory from langchain.memory.chat_message_histories import StreamlitChatMessageHistory from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma # Environment variables and configuration load_dotenv() WEBSITE_URL = os.environ.get('WEBSITE_URL', 'a website') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') APIFY_API_TOKEN = os.environ.get('APIFY_API_TOKEN') # Scraper Functionality def scrape_website(): apify_client = ApifyClient(APIFY_API_TOKEN) st.write(f'Extracting data from "{WEBSITE_URL}". Please wait...') actor_run_info = apify_client.actor('apify/website-content-crawler').call( run_input={'startUrls': [{'url': WEBSITE_URL}]} ) st.write('Saving data into the vector database. Please wait...') loader = ApifyDatasetLoader( dataset_id=actor_run_info['defaultDatasetId'], dataset_mapping_function=lambda item: Document( page_content=item['text'] or '', metadata={'source': item['url']} ), ) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100) docs = text_splitter.split_documents(documents) embedding = OpenAIEmbeddings(api_key=OPENAI_API_KEY) vectordb = Chroma.from_documents( documents=docs, embedding=embedding, persist_directory='db2', ) vectordb.persist() st.write('All done!') # Chat Functionality def chat_with_website(): st.set_page_config(page_title=f'Chat with {WEBSITE_URL}') st.title('Chat with a website') retriever = get_retriever() msgs = StreamlitChatMessageHistory() memory = ConversationBufferMemory(memory_key='chat_history', chat_memory=msgs, return_messages=True) llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, streaming=True) qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, memory=memory, verbose=False ) if st.sidebar.button('Clear message history') or len(msgs.messages) == 0: msgs.clear() msgs.add_ai_message(f'Ask me anything about {WEBSITE_URL}!') avatars = {'human': 'user', 'ai': 'assistant'} for msg in msgs.messages: st.chat_message(avatars[msg.type]).write(msg.content) if user_query := st.chat_input(placeholder='Ask me anything!'): st.chat_message('user').write(user_query) with st.chat_message('assistant'): stream_handler = StreamHandler(st.empty()) response = qa_chain.run(user_query, callbacks=[stream_handler]) @st.cache_resource(ttl='1h') def get_retriever(): embeddings = OpenAIEmbeddings() vectordb = Chroma(persist_directory='db', embedding_function=embeddings) retriever = vectordb.as_retriever(search_type='mmr') return retriever class StreamHandler(BaseCallbackHandler): def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ''): self.container = container self.text = initial_text def on_llm_new_token(self, token: str, **kwargs) -> None: self.text += token self.container.markdown(self.text) # Main App Flow if st.sidebar.button("Scrape a new website"): scrape_website() if st.sidebar.button("Chat with scraped website"): chat_with_website()