|
import gradio as gr |
|
import numpy as np |
|
from elevenlabs import voices, generate, set_api_key, UnauthenticatedRateLimitError |
|
|
|
def pad_buffer(audio): |
|
buffer_size = len(audio) |
|
element_size = np.dtype(np.int16).itemsize |
|
if buffer_size % element_size != 0: |
|
audio = audio + b'\0' * (element_size - (buffer_size % element_size)) |
|
return audio |
|
|
|
def generate_voice(text, voice_name): |
|
model_name = "eleven_multilingual_v1" |
|
try: |
|
audio = generate( |
|
text[:250], |
|
voice=voice_name, |
|
model=model_name |
|
) |
|
return (44100, np.frombuffer(pad_buffer(audio), dtype=np.int16)) |
|
except UnauthenticatedRateLimitError as e: |
|
raise gr.Error("Thanks for trying out ElevenLabs TTS! You've reached the free tier limit. Please provide an API key to continue.") |
|
except Exception as e: |
|
raise gr.Error(str(e)) |
|
|
|
all_voices = voices() |
|
desired_voices = ["Antonio"] |
|
filtered_voices = [voice.name for voice in all_voices if voice.name in desired_voices] |
|
|
|
input_text = gr.Textbox(label="Input Text", lines=2) |
|
input_voice = gr.Dropdown(choices=filtered_voices, default="Antonio", label="Voice") |
|
out_audio = gr.Audio(label="Generated Voice", type="numpy") |
|
|
|
iface = gr.Interface( |
|
fn=generate_voice, |
|
inputs=[input_text, input_voice], |
|
outputs=out_audio, |
|
live=True |
|
) |
|
|
|
iface.launch() |