whisper / app.py
antfraia's picture
Update app.py
867943a
raw
history blame
1.19 kB
import gradio as gr
from transformers import BartTokenizer, BartForConditionalGeneration
import whisper
# Initialize the BART model and tokenizer
MODEL_NAME = "facebook/bart-large-cnn"
model = BartForConditionalGeneration.from_pretrained(MODEL_NAME)
tokenizer = BartTokenizer.from_pretrained(MODEL_NAME)
def convert_and_summarize(audio_path: str) -> str:
# Convert audio to text
whisper_model = whisper.load_model("base")
result = whisper_model.transcribe(audio_path)
transcribed_text = result["text"]
# Summarize the transcribed text
inputs = tokenizer([transcribed_text], max_length=1024, truncation=True, return_tensors='pt')
summary_ids = model.generate(inputs['input_ids'])
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
audio_input = gr.inputs.Audio(type="filepath")
# Interface for Gradio
iface = gr.Interface(
fn=convert_and_summarize,
inputs=audio_input,
outputs="text",
title="Audio-to-Summarized-Text",
description="Upload an audio here and get a bullet-point summary of its content.",
theme="Monochrome",
live=True,
capture_session=True,
)
iface.launch()