Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import whisper
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
tokenizer = BartTokenizer.from_pretrained(MODEL_NAME)
|
9 |
|
10 |
-
def
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
transcribed_text = result["text"]
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
return
|
22 |
|
23 |
audio_input = gr.inputs.Audio(type="filepath")
|
|
|
24 |
|
25 |
-
# Interface for Gradio
|
26 |
iface = gr.Interface(
|
27 |
-
fn=
|
28 |
inputs=audio_input,
|
29 |
-
outputs=
|
30 |
-
title="
|
31 |
-
description="Upload an audio
|
32 |
theme="Monochrome",
|
33 |
live=True,
|
34 |
capture_session=True,
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
|
|
3 |
|
4 |
+
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v2/whisper"
|
5 |
+
API_KEY = "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"
|
6 |
+
HEADERS = {"Authorization": f"Bearer {API_KEY}"}
|
|
|
7 |
|
8 |
+
def transcribe_audio(audio_path: str) -> str:
|
9 |
+
# Read audio file
|
10 |
+
with open(audio_path, "rb") as f:
|
11 |
+
audio_data = f.read()
|
|
|
12 |
|
13 |
+
# Make API request to OpenAI Whisper v2 API
|
14 |
+
response = requests.post(API_URL, headers=HEADERS, data=audio_data)
|
15 |
+
result = response.json()
|
16 |
+
transcribed_text = result["text"]
|
17 |
|
18 |
+
return transcribed_text
|
19 |
|
20 |
audio_input = gr.inputs.Audio(type="filepath")
|
21 |
+
text_output = gr.outputs.Textbox()
|
22 |
|
|
|
23 |
iface = gr.Interface(
|
24 |
+
fn=transcribe_audio,
|
25 |
inputs=audio_input,
|
26 |
+
outputs=text_output,
|
27 |
+
title="Speech-to-Text using Whisper v2",
|
28 |
+
description="Upload an audio file to transcribe it to text.",
|
29 |
theme="Monochrome",
|
30 |
live=True,
|
31 |
capture_session=True,
|