Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,27 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
# Load
|
4 |
-
|
|
|
5 |
|
6 |
-
def transcribe_audio(
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
# Setup the custom Gradio interface with your configurations
|
14 |
iface = gr.Interface(
|
15 |
fn=transcribe_audio,
|
16 |
inputs=audio_input,
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
|
4 |
+
# Load model and processor
|
5 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
6 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
7 |
|
8 |
+
def transcribe_audio(audio_path: str) -> str:
|
9 |
+
with open(audio_path, "rb") as f:
|
10 |
+
audio_data = f.read()
|
11 |
+
|
12 |
+
# Get audio features
|
13 |
+
input_features = processor(audio_data, return_tensors="pt").input_features
|
14 |
|
15 |
+
# Transcribe without forcing any context tokens so that the model tries to automatically detect the language
|
16 |
+
model.config.forced_decoder_ids = None
|
17 |
+
predicted_ids = model.generate(input_features)
|
18 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
19 |
+
|
20 |
+
return transcription[0]
|
21 |
+
|
22 |
+
audio_input = gr.inputs.Audio(type="file", label="Upload an audio file")
|
23 |
+
text_output = gr.outputs.Textbox(label="Transcription")
|
24 |
|
|
|
25 |
iface = gr.Interface(
|
26 |
fn=transcribe_audio,
|
27 |
inputs=audio_input,
|