|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import pipeline |
|
import datetime |
|
import json |
|
import logging |
|
|
|
model_path = "cardiffnlp/twitter-roberta-base-sentiment-latest" |
|
|
|
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) |
|
|
|
@spaces.GPU |
|
def classify(query): |
|
torch_device = 0 if torch.cuda.is_available() else -1 |
|
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path, device=torch_device) |
|
|
|
request_type = type(query) |
|
try: |
|
data = json.loads(query) |
|
if type(data) != list: |
|
data = [query] |
|
else: |
|
request_type = type(data) |
|
except Exception as e: |
|
print(e) |
|
data = [query] |
|
pass |
|
|
|
start_time = datetime.datetime.now() |
|
|
|
result = sentiment_task(data, batch_size=128) |
|
|
|
end_time = datetime.datetime.now() |
|
elapsed_time = end_time - start_time |
|
|
|
logging.debug("elapsed predict time: %s", str(elapsed_time)) |
|
print("elapsed predict time:", str(elapsed_time)) |
|
|
|
output = {} |
|
output["time"] = str(elapsed_time) |
|
output["device"] = torch_device |
|
output["result"] = result |
|
|
|
return json.dumps(output) |
|
|
|
demo = gr.Interface(fn=classify, inputs="text", outputs="text") |
|
demo.launch() |