Commit
·
9415e6f
1
Parent(s):
defebef
added
Browse files- app.py +16 -566
- flagged/Output/tmp0n4o_4xk.json +1 -0
- flagged/Output/tmp53qk_28w.json +1 -0
- flagged/Output/tmp5geu50qc.json +1 -0
- flagged/Output/tmpilj11fim.json +1 -0
- flagged/Output/tmpir2yb79m.json +1 -0
- flagged/Output/tmpl1qism4a.json +1 -0
- flagged/Output/tmps39i7gz8.json +1 -0
- flagged/Output/tmpu4xpbklk.json +1 -0
- flagged/log.csv +9 -0
- requirements.txt +3 -16
app.py
CHANGED
@@ -1,571 +1,21 @@
|
|
1 |
-
import
|
2 |
-
import streamlit as st
|
3 |
-
import wikipedia
|
4 |
-
from wikipedia import WikipediaPage
|
5 |
-
import pandas as pd
|
6 |
-
import spacy
|
7 |
-
import unicodedata
|
8 |
-
from nltk.corpus import stopwords
|
9 |
-
import numpy as np
|
10 |
-
import nltk
|
11 |
-
from newspaper import Article
|
12 |
-
|
13 |
-
nltk.download('stopwords')
|
14 |
-
from string import punctuation
|
15 |
-
import json
|
16 |
-
import time
|
17 |
-
from datetime import datetime, timedelta
|
18 |
-
import urllib
|
19 |
-
from io import BytesIO
|
20 |
-
from PIL import Image, UnidentifiedImageError
|
21 |
-
from SPARQLWrapper import SPARQLWrapper, JSON, N3
|
22 |
-
from fuzzywuzzy import process, fuzz
|
23 |
-
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
|
24 |
from transformers import pipeline
|
25 |
-
import
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
class ExtractArticleEntities:
|
31 |
-
""" Extract article entities from a document using natural language processing (NLP) and fuzzy matching.
|
32 |
-
Parameters
|
33 |
-
- text: a string or the text of a news article to be parsed
|
34 |
-
Usage:
|
35 |
-
import ExtractArticleEntities
|
36 |
-
instantiate with text parameter ie. entities = ExtractArticleEntities(text)
|
37 |
-
retrieve Who, What, When, Where entities with entities.www_json
|
38 |
-
Non-organised entities with entiities.json
|
39 |
-
"""
|
40 |
-
|
41 |
-
def __init__(self, text):
|
42 |
-
self.text = text # preprocess text at initialisation
|
43 |
-
self.text = self.preprocessing(self.text)
|
44 |
-
print(self.text)
|
45 |
-
print('_____text_____')
|
46 |
-
self.json = {}
|
47 |
-
# Create empty dataframe to hold entity data for ease of processing
|
48 |
-
self.entity_df = pd.DataFrame(columns=["entity", "description"])
|
49 |
-
# Load the spacy model
|
50 |
-
|
51 |
-
# self.nlp = en_core_web_lg.load()
|
52 |
-
self.nlp = pipeline(model="51la5/roberta-large-NER")
|
53 |
-
|
54 |
-
# Parse the text
|
55 |
-
self.entity_df = self.get_who_what_where_when()
|
56 |
-
# Disambiguate entities
|
57 |
-
|
58 |
-
self.entity_df = self.fuzzy_disambiguation()
|
59 |
-
self.get_related_entity()
|
60 |
-
self.get_popularity()
|
61 |
-
# Create JSON representation of entities
|
62 |
-
self.entity_df = self.entity_df.drop_duplicates(subset=["description"])
|
63 |
-
|
64 |
-
self.entity_df = self.entity_df.reset_index(drop=True)
|
65 |
-
|
66 |
-
# ungrouped entity returned as json
|
67 |
-
self.json = self.entity_json()
|
68 |
-
# return json with entities grouped into who, what, where, when keys
|
69 |
-
self.www_json = self.get_wwww_json()
|
70 |
-
|
71 |
-
# def get_related_entity(self):
|
72 |
-
# entities = self.entity_df.description
|
73 |
-
# labels = self.entity_df.entity
|
74 |
-
# related_entity = []
|
75 |
-
# for entity, label in zip(entities, labels):
|
76 |
-
# if label in ('PERSON', 'ORG','GPE','NORP','LOC'):
|
77 |
-
# related_entity.append(wikipedia.search(entity, 3))
|
78 |
-
# else:
|
79 |
-
# related_entity.append([None])
|
80 |
-
|
81 |
-
# self.entity_df['Wikipedia Entity'] = related_entity
|
82 |
-
|
83 |
-
def get_popularity(self):
|
84 |
-
# names = self.entity_df.description
|
85 |
-
# related_names = self.entity_df['Matched Entity']
|
86 |
-
# for name, related_name in zip(names, related_names):
|
87 |
-
# if related_name:
|
88 |
-
# related_name.append(name)
|
89 |
-
# pytrends.build_payload(related_name, timeframe='now 4-d')
|
90 |
-
# st.dataframe(pytrends.interest_over_time())
|
91 |
-
# time.sleep(2)
|
92 |
-
master_df = pd.DataFrame()
|
93 |
-
view_list = []
|
94 |
-
for entity in self.entity_df['Matched Entity']:
|
95 |
-
if entity:
|
96 |
-
entity_to_look = entity[0]
|
97 |
-
# print(entity_to_look, '_______')
|
98 |
-
entity_to_look = entity_to_look.replace(' ', '_')
|
99 |
-
print(entity_to_look, '_______')
|
100 |
-
headers = {
|
101 |
-
'accept': 'application/json',
|
102 |
-
'User-Agent': 'Foo bar'
|
103 |
-
}
|
104 |
-
|
105 |
-
now = datetime.now()
|
106 |
-
now_dt = now.strftime(r'%Y%m%d')
|
107 |
-
week_back = now - timedelta(days=7)
|
108 |
-
week_back_dt = week_back.strftime(r'%Y%m%d')
|
109 |
-
resp = requests.get(
|
110 |
-
f'https://wikimedia.org/api/rest_v1/metrics/pageviews/per-article/en.wikipedia.org/all-access/all-agents/{entity_to_look}/daily/{week_back_dt}/{now_dt}',
|
111 |
-
headers=headers)
|
112 |
-
data = resp.json()
|
113 |
-
# print(data)
|
114 |
-
df = pd.json_normalize(data['items'])
|
115 |
-
view_count = sum(df['views'])
|
116 |
-
|
117 |
-
else:
|
118 |
-
view_count = 0
|
119 |
-
view_list.append(view_count)
|
120 |
-
|
121 |
-
self.entity_df['Views'] = view_list
|
122 |
-
|
123 |
-
for entity in ('PERSON', 'ORG', 'GPE', 'NORP', 'LOC'):
|
124 |
-
related_entity_view_list = []
|
125 |
-
grouped_df = self.entity_df[self.entity_df['entity'] == entity]
|
126 |
-
grouped_df['Matched count'] = grouped_df['fuzzy_match'].apply(len)
|
127 |
-
grouped_df['Wiki count'] = grouped_df['Matched Entity'].apply(len)
|
128 |
-
|
129 |
-
grouped_df = grouped_df.sort_values(by=['Views', 'Matched count', 'Wiki count'],
|
130 |
-
ascending=False).reset_index(drop=True)
|
131 |
-
if not grouped_df.empty:
|
132 |
-
# st.dataframe(grouped_df)
|
133 |
-
master_df = pd.concat([master_df, grouped_df])
|
134 |
-
|
135 |
-
self.sorted_entity_df = master_df
|
136 |
-
if 'Views' in self.sorted_entity_df:
|
137 |
-
self.sorted_entity_df = self.sorted_entity_df.sort_values(by=['Views'], ascending=False).reset_index(
|
138 |
-
drop=True)
|
139 |
-
# st.dataframe(self.sorted_entity_df)
|
140 |
-
# names = grouped_df['description'][:5].values
|
141 |
-
# print(names, type(names))
|
142 |
-
# if names.any():
|
143 |
-
# # pytrends.build_payload(names, timeframe='now 1-m')
|
144 |
-
# st.dataframe(pytrends.get_historical_interest(names,
|
145 |
-
# year_start=2022, month_start=10, day_start=1,
|
146 |
-
# hour_start=0,
|
147 |
-
# year_end=2022, month_end=10, day_end=21,
|
148 |
-
# hour_end=0, cat=0, geo='', gprop='', sleep=0))
|
149 |
-
# st.dataframe()
|
150 |
-
# time.sleep(2)
|
151 |
-
# st.dataframe(grouped_df)
|
152 |
-
|
153 |
-
def get_related_entity(self):
|
154 |
-
names = self.entity_df.description
|
155 |
-
entities = self.entity_df.entity
|
156 |
-
self.related_entity = []
|
157 |
-
match_scores = []
|
158 |
-
for name, entity in zip(names, entities):
|
159 |
-
if entity in ('PERSON', 'ORG', 'GPE', 'NORP', 'LOC'):
|
160 |
-
related_names = wikipedia.search(name, 10)
|
161 |
-
self.related_entity.append(related_names)
|
162 |
-
matches = process.extract(name, related_names)
|
163 |
-
match_scores.append([match[0] for match in matches if match[1] >= 90])
|
164 |
-
else:
|
165 |
-
self.related_entity.append([None])
|
166 |
-
match_scores.append([])
|
167 |
-
# Remove nulls
|
168 |
-
|
169 |
-
self.entity_df['Wikipedia Entity'] = self.related_entity
|
170 |
-
self.entity_df['Matched Entity'] = match_scores
|
171 |
-
|
172 |
-
def fuzzy_disambiguation(self):
|
173 |
-
# Load the entity data
|
174 |
-
self.entity_df['fuzzy_match'] = ''
|
175 |
-
# Load the entity data
|
176 |
-
person_choices = self.entity_df.loc[self.entity_df['entity'] == 'PERSON']
|
177 |
-
org_choices = self.entity_df.loc[self.entity_df['entity'] == 'ORG']
|
178 |
-
where_choices = self.entity_df.loc[self.entity_df['entity'] == 'GPE']
|
179 |
-
norp_choices = self.entity_df.loc[self.entity_df['entity'] == 'NORP']
|
180 |
-
loc_choices = self.entity_df.loc[self.entity_df['entity'] == 'LOC']
|
181 |
-
date_choices = self.entity_df.loc[self.entity_df['entity'] == 'DATE']
|
182 |
-
|
183 |
-
def fuzzy_match(row, choices):
|
184 |
-
'''This function disambiguates entities by looking for maximum three matches with a score of 80 or more
|
185 |
-
for each of the entity types. If there is no match, then the function returns None. '''
|
186 |
-
match = process.extract(row["description"], choices["description"], limit=3)
|
187 |
-
|
188 |
-
match = [m[0] for m in match if m[1] > 80 and m[1] != 100]
|
189 |
-
|
190 |
-
if len(match) == 0:
|
191 |
-
match = []
|
192 |
-
|
193 |
-
if match:
|
194 |
-
self.fuzzy_match_dict[row["description"]] = match
|
195 |
-
|
196 |
-
return match
|
197 |
-
|
198 |
-
# Apply the fuzzy matching function to the entity dataframe
|
199 |
-
|
200 |
-
self.fuzzy_match_dict = {}
|
201 |
-
|
202 |
-
for i, row in self.entity_df.iterrows():
|
203 |
-
|
204 |
-
if row['entity'] == 'PERSON':
|
205 |
-
|
206 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, person_choices)
|
207 |
-
|
208 |
-
elif row['entity'] == 'ORG':
|
209 |
-
|
210 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, org_choices)
|
211 |
-
elif row['entity'] == 'GPE':
|
212 |
-
|
213 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, where_choices)
|
214 |
-
|
215 |
-
elif row['entity'] == 'NORP':
|
216 |
-
|
217 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, norp_choices)
|
218 |
-
elif row['entity'] == 'LOC':
|
219 |
-
|
220 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, loc_choices)
|
221 |
-
elif row['entity'] == 'DATE':
|
222 |
-
|
223 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, date_choices)
|
224 |
-
|
225 |
-
return self.entity_df
|
226 |
-
|
227 |
-
def preprocessing(self, text):
|
228 |
-
"""This function takes a text string and strips out all punctuation. It then normalizes the string to a
|
229 |
-
normalized form (using the "NFKD" normalization algorithm). Finally, it strips any special characters and
|
230 |
-
converts them to their unicode equivalents. """
|
231 |
-
|
232 |
-
# remove punctuation
|
233 |
-
text = text.translate(str.maketrans("", "", punctuation))
|
234 |
-
# normalize the text
|
235 |
-
stop_words = stopwords.words('english')
|
236 |
-
|
237 |
-
# Removing Stop words can cause losing context, instead stopwords can be utilized for knowledge
|
238 |
-
filtered_words = [word for word in self.text.split()] # if word not in stop_words]
|
239 |
-
|
240 |
-
# This is very hacky. Need a better way of handling bad encoding
|
241 |
-
pre_text = " ".join(filtered_words)
|
242 |
-
pre_text = pre_text = pre_text.replace(' ', ' ')
|
243 |
-
pre_text = pre_text.replace('’', "'")
|
244 |
-
pre_text = pre_text.replace('“', '"')
|
245 |
-
pre_text = pre_text.replace('â€', '"')
|
246 |
-
pre_text = pre_text.replace('‘', "'")
|
247 |
-
pre_text = pre_text.replace('…', '...')
|
248 |
-
pre_text = pre_text.replace('–', '-')
|
249 |
-
pre_text = pre_text.replace("\x9d", '-')
|
250 |
-
# normalize the text
|
251 |
-
pre_text = unicodedata.normalize("NFKD", pre_text)
|
252 |
-
# strip punctuation again as some remains in first pass
|
253 |
-
pre_text = pre_text.translate(str.maketrans("", "", punctuation))
|
254 |
-
|
255 |
-
return pre_text
|
256 |
-
|
257 |
-
def get_who_what_where_when(self):
|
258 |
-
"""Get entity information in a document.
|
259 |
-
This function will return a DataFrame with the following columns:
|
260 |
-
- entity: the entity being queried
|
261 |
-
- description: a brief description of the entity
|
262 |
-
Usage:
|
263 |
-
get_who_what_where_when(text)
|
264 |
-
Example:
|
265 |
-
> get_who_what_where_when('This is a test')
|
266 |
-
PERSON
|
267 |
-
ORG
|
268 |
-
GPE
|
269 |
-
LOC
|
270 |
-
PRODUCT
|
271 |
-
EVENT
|
272 |
-
LAW
|
273 |
-
LANGUAGE
|
274 |
-
NORP
|
275 |
-
DATE
|
276 |
-
GPE
|
277 |
-
TIME"""
|
278 |
-
|
279 |
-
# list to hold entity data
|
280 |
-
article_entity_list = []
|
281 |
-
# tokenize the text
|
282 |
-
doc = self.nlp(self.text)
|
283 |
-
# iterate over the entities in the document but only keep those which are meaningful
|
284 |
-
desired_entities = ['PERSON', 'ORG', 'GPE', 'LOC', 'PRODUCT', 'EVENT', 'LAW', 'LANGUAGE', 'NORP', 'DATE', 'GPE',
|
285 |
-
'TIME']
|
286 |
-
self.label_dict = {}
|
287 |
-
|
288 |
-
# stop_words = stopwords.words('english')
|
289 |
-
for ent in doc.ents:
|
290 |
-
|
291 |
-
self.label_dict[ent] = ent.label_
|
292 |
-
if ent.label_ in desired_entities:
|
293 |
-
# add the entity to the list
|
294 |
-
entity_dict = {ent.label_: ent.text}
|
295 |
-
|
296 |
-
article_entity_list.append(entity_dict)
|
297 |
-
|
298 |
-
# dedupe the entities but only on exact match of values as occasional it will assign an ORG entity to PER
|
299 |
-
deduplicated_entities = {frozenset(item.values()):
|
300 |
-
item for item in article_entity_list}.values()
|
301 |
-
# create a dataframe from the entities
|
302 |
-
for record in deduplicated_entities:
|
303 |
-
record_df = pd.DataFrame(record.items(), columns=["entity", "description"])
|
304 |
-
self.entity_df = pd.concat([self.entity_df, record_df], ignore_index=True)
|
305 |
-
|
306 |
-
print(self.entity_df)
|
307 |
-
print('______________________')
|
308 |
-
return self.entity_df
|
309 |
-
|
310 |
-
def entity_json(self):
|
311 |
-
"""Returns a JSON representation of an entity defined by the `entity_df` dataframe. The `entity_json` function
|
312 |
-
will return a JSON object with the following fields:
|
313 |
-
- entity: The type of the entity in the text
|
314 |
-
- description: The name of the entity as described in the input text
|
315 |
-
- fuzzy_match: A list of fuzzy matches for the entity. This is useful for disambiguating entities that are similar
|
316 |
-
"""
|
317 |
-
|
318 |
-
self.json = json.loads(self.entity_df.to_json(orient='records'))
|
319 |
-
# self.json = json.dumps(self.json, indent=2)
|
320 |
-
return self.json
|
321 |
-
|
322 |
-
def get_wwww_json(self):
|
323 |
-
"""This function returns a JSON representation of the `get_who_what_where_when` function. The `get_www_json`
|
324 |
-
function will return a JSON object with the following fields:
|
325 |
-
- entity: The type of the entity in the text
|
326 |
-
- description: The name of the entity as described in the input text
|
327 |
-
- fuzzy_match: A list of fuzzy matches for the entity. This is useful for disambiguating entities that are similar
|
328 |
-
"""
|
329 |
-
|
330 |
-
# create a json object from the entity dataframe
|
331 |
-
who_dict = {"who": [ent for ent in self.entity_json() if ent['entity'] in ['ORG', 'PERSON']]}
|
332 |
-
where_dict = {"where": [ent for ent in self.entity_json() if ent['entity'] in ['GPE', 'LOC']]}
|
333 |
-
when_dict = {"when": [ent for ent in self.entity_json() if ent['entity'] in ['DATE', 'TIME']]}
|
334 |
-
what_dict = {
|
335 |
-
"what": [ent for ent in self.entity_json() if ent['entity'] in ['PRODUCT', 'EVENT', 'LAW', 'LANGUAGE',
|
336 |
-
'NORP']]}
|
337 |
-
article_wwww = [who_dict, where_dict, when_dict, what_dict]
|
338 |
-
self.wwww_json = json.dumps(article_wwww, indent=2)
|
339 |
-
|
340 |
-
return self.wwww_json
|
341 |
-
|
342 |
-
|
343 |
-
news_article = st.text_input('Paste an Article here to be parsed')
|
344 |
-
if 'parsed' not in st.session_state:
|
345 |
-
st.session_state['parsed'] = None
|
346 |
-
st.session_state['article'] = None
|
347 |
-
if news_article:
|
348 |
-
st.write('Your news article is')
|
349 |
-
st.write(news_article)
|
350 |
-
|
351 |
-
if st.button('Get details'):
|
352 |
-
|
353 |
-
parsed = ExtractArticleEntities(news_article)
|
354 |
-
if parsed:
|
355 |
-
st.session_state['article'] = parsed.sorted_entity_df
|
356 |
-
st.session_state['parsed'] = True
|
357 |
-
st.session_state['json'] = parsed.www_json
|
358 |
-
|
359 |
-
|
360 |
-
# if not st.session_state['article'].empty:
|
361 |
-
|
362 |
-
def preprocessing(text):
|
363 |
-
"""This function takes a text string and strips out all punctuation. It then normalizes the string to a
|
364 |
-
normalized form (using the "NFKD" normalization algorithm). Finally, it strips any special characters and
|
365 |
-
converts them to their unicode equivalents. """
|
366 |
-
|
367 |
-
# remove punctuation
|
368 |
-
if text:
|
369 |
-
text = text.translate(str.maketrans("", "", punctuation))
|
370 |
-
# normalize the text
|
371 |
-
stop_words = stopwords.words('english')
|
372 |
-
|
373 |
-
# Removing Stop words can cause losing context, instead stopwords can be utilized for knowledge
|
374 |
-
filtered_words = [word for word in text.split()] # if word not in stop_words]
|
375 |
-
|
376 |
-
# This is very hacky. Need a better way of handling bad encoding
|
377 |
-
pre_text = " ".join(filtered_words)
|
378 |
-
pre_text = pre_text = pre_text.replace(' ', ' ')
|
379 |
-
pre_text = pre_text.replace('’', "'")
|
380 |
-
pre_text = pre_text.replace('“', '"')
|
381 |
-
pre_text = pre_text.replace('â€', '"')
|
382 |
-
pre_text = pre_text.replace('‘', "'")
|
383 |
-
pre_text = pre_text.replace('…', '...')
|
384 |
-
pre_text = pre_text.replace('–', '-')
|
385 |
-
pre_text = pre_text.replace("\x9d", '-')
|
386 |
-
# normalize the text
|
387 |
-
pre_text = unicodedata.normalize("NFKD", pre_text)
|
388 |
-
# strip punctuation again as some remains in first pass
|
389 |
-
pre_text = pre_text.translate(str.maketrans("", "", punctuation))
|
390 |
-
|
391 |
-
else:
|
392 |
-
pre_text = None
|
393 |
-
return pre_text
|
394 |
-
|
395 |
-
|
396 |
-
def filter_wiki_df(df):
|
397 |
-
key_list = df.keys()[:2]
|
398 |
-
# df.to_csv('test.csv')
|
399 |
-
df = df[key_list]
|
400 |
-
# if len(df.keys()) == 2:
|
401 |
-
df['Match Check'] = np.where(df[df.keys()[0]] != df[df.keys()[1]], True, False)
|
402 |
-
|
403 |
-
df = df[df['Match Check'] != False]
|
404 |
-
df = df[key_list]
|
405 |
-
df = df.dropna(how='any').reset_index(drop=True)
|
406 |
-
# filtered_term = []
|
407 |
-
# for terms in df[df.keys()[0]]:
|
408 |
-
# if isinstance(terms, str):
|
409 |
-
# filtered_term.append(preprocessing(terms))
|
410 |
-
# else:
|
411 |
-
# filtered_term.append(None)
|
412 |
-
# df[df.keys()[0]] = filtered_term
|
413 |
-
df.rename(columns={key_list[0]: 'Attribute', key_list[1]: 'Value'}, inplace=True)
|
414 |
-
|
415 |
-
return df
|
416 |
-
|
417 |
-
|
418 |
-
def get_entity_from_selectbox(related_entity):
|
419 |
-
entity = st.selectbox('Please select the term:', related_entity, key='foo')
|
420 |
-
if entity:
|
421 |
-
summary_entity = wikipedia.summary(entity, 3)
|
422 |
-
return summary_entity
|
423 |
-
|
424 |
-
|
425 |
-
if st.session_state['parsed']:
|
426 |
-
df = st.session_state['article']
|
427 |
-
# left, right = st.columns(2)
|
428 |
-
# with left:
|
429 |
-
df_to_st = pd.DataFrame()
|
430 |
-
|
431 |
-
df_to_st['Name'] = df['description']
|
432 |
-
df_to_st['Is a type of'] = df['entity']
|
433 |
-
df_to_st['Related to'] = df['Matched Entity']
|
434 |
-
df_to_st['Is a type of'] = df_to_st['Is a type of'].replace({'PERSON': 'Person',
|
435 |
-
'ORG': 'Organization',
|
436 |
-
'GPE': 'Political Location',
|
437 |
-
'NORP': 'Political or Religious Groups',
|
438 |
-
'LOC': 'Non Political Location'})
|
439 |
-
gb = GridOptionsBuilder.from_dataframe(df_to_st)
|
440 |
-
gb.configure_pagination(paginationAutoPageSize=True) # Add pagination
|
441 |
-
gb.configure_side_bar() # Add a sidebar
|
442 |
-
gb.configure_selection('multiple', use_checkbox=True,
|
443 |
-
groupSelectsChildren="Group checkbox select children") # Enable multi-row selection
|
444 |
-
gridOptions = gb.build()
|
445 |
-
|
446 |
-
# st.dataframe(df_to_st)
|
447 |
-
grid_response = AgGrid(
|
448 |
-
df_to_st,
|
449 |
-
gridOptions=gridOptions,
|
450 |
-
data_return_mode='AS_INPUT',
|
451 |
-
update_mode='MODEL_CHANGED',
|
452 |
-
fit_columns_on_grid_load=False,
|
453 |
-
enable_enterprise_modules=True,
|
454 |
-
height=350,
|
455 |
-
width='100%',
|
456 |
-
reload_data=True
|
457 |
-
)
|
458 |
-
|
459 |
-
data = grid_response['data']
|
460 |
-
selected = grid_response['selected_rows']
|
461 |
-
selected_df = pd.DataFrame(selected)
|
462 |
-
if not selected_df.empty:
|
463 |
-
selected_entity = selected_df[['Name', 'Is a type of', 'Related to']]
|
464 |
-
st.dataframe(selected_entity)
|
465 |
-
|
466 |
-
# with right:
|
467 |
-
# st.json(st.session_state['json'])
|
468 |
-
|
469 |
-
entities_list = df['description']
|
470 |
-
# selected_entity = st.selectbox('Which entity you want to choose?',
|
471 |
-
# entities_list)
|
472 |
-
if not selected_df.empty and selected_entity['Name'].any():
|
473 |
-
|
474 |
-
# lookup_url = rf'https://lookup.dbpedia.org/api/search?query={selected_entity}'
|
475 |
-
# r = requests.get(lookup_url)
|
476 |
-
|
477 |
-
selected_row = df.loc[df['description'] == selected_entity['Name'][0]]
|
478 |
-
|
479 |
-
entity_value = selected_row.values
|
480 |
-
# st.write('Entity is a ', entity_value[0][0])
|
481 |
-
label, name, fuzzy, related, related_match, _, _, _ = entity_value[0]
|
482 |
-
not_matched = [word for word in related if word not in related_match]
|
483 |
-
fuzzy = fuzzy[0] if len(fuzzy) > 0 else ''
|
484 |
-
related = related[0] if len(related) > 0 else ''
|
485 |
-
not_matched = not_matched[0] if len(not_matched) > 0 else related
|
486 |
-
|
487 |
-
related_entity_list = [name, fuzzy, not_matched]
|
488 |
-
related_entity = entity_value[0][1:]
|
489 |
-
|
490 |
-
google_query_term = ' '.join(related_entity_list)
|
491 |
-
# search()
|
492 |
-
try:
|
493 |
-
urls = [i for i in search(google_query_term, stop=10, pause=2.0, tld='com', lang='en', tbs='0',
|
494 |
-
user_agent=get_random_user_agent())]
|
495 |
-
except:
|
496 |
-
urls = []
|
497 |
-
# urls = search(google_query_term+' news latest', num_results=10)
|
498 |
-
st.session_state['wiki_summary'] = False
|
499 |
-
all_related_entity = []
|
500 |
-
for el in related_entity[:-2]:
|
501 |
-
if isinstance(el, str):
|
502 |
-
all_related_entity.append(el)
|
503 |
-
elif isinstance(el, int):
|
504 |
-
all_related_entity.append(str(el))
|
505 |
-
else:
|
506 |
-
all_related_entity.extend(el)
|
507 |
-
# [ if type(el) == 'int' all_related_entity.extend(el) else all_related_entity.extend([el])for el in related_entity]
|
508 |
-
for entity in all_related_entity:
|
509 |
-
# try:
|
510 |
-
if True:
|
511 |
-
if entity:
|
512 |
-
entity = entity.replace(' ', '_')
|
513 |
-
query = f'''
|
514 |
-
SELECT ?name ?comment ?image
|
515 |
-
WHERE {{ dbr:{entity} rdfs:label ?name.
|
516 |
-
dbr:{entity} rdfs:comment ?comment.
|
517 |
-
dbr:{entity} dbo:thumbnail ?image.
|
518 |
-
|
519 |
-
FILTER (lang(?name) = 'en')
|
520 |
-
FILTER (lang(?comment) = 'en')
|
521 |
-
}}'''
|
522 |
-
sparql.setQuery(query)
|
523 |
-
|
524 |
-
sparql.setReturnFormat(JSON)
|
525 |
-
qres = sparql.query().convert()
|
526 |
-
if qres['results']['bindings']:
|
527 |
-
result = qres['results']['bindings'][0]
|
528 |
-
name, comment, image_url = result['name']['value'], result['comment']['value'], result['image'][
|
529 |
-
'value']
|
530 |
-
# urllib.request.urlretrieve(image_url, "img.jpg")
|
531 |
-
|
532 |
-
# img = Image.open("/Users/anujkarn/NER/img.jpg")
|
533 |
-
wiki_url = f'https://en.wikipedia.org/wiki/{entity}'
|
534 |
-
|
535 |
-
st.write(name)
|
536 |
-
# st.image(img)
|
537 |
-
st.write(image_url)
|
538 |
-
# try:
|
539 |
-
response = requests.get(image_url)
|
540 |
-
try:
|
541 |
-
related_image = Image.open(BytesIO(response.content))
|
542 |
-
st.image(related_image)
|
543 |
-
except UnidentifiedImageError:
|
544 |
-
st.write('Not able to get image')
|
545 |
-
pass
|
546 |
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
|
553 |
-
st.write('Showing desciption for entity:', name)
|
554 |
-
st.dataframe(wiki_knowledge_df)
|
555 |
-
# if st.button('Want something else?'):
|
556 |
-
# summary_entity = get_entity_from_selectbox(all_related_entity)
|
557 |
-
break
|
558 |
-
# summary_entity = wikipedia.summary(entity, 3)
|
559 |
-
else:
|
560 |
-
summary_entity = None
|
561 |
-
if not summary_entity:
|
562 |
-
try:
|
563 |
-
summary_entity = get_entity_from_selectbox(all_related_entity)
|
564 |
-
# page = WikipediaPage(entity)
|
565 |
|
566 |
-
|
567 |
-
|
|
|
|
|
|
|
568 |
|
569 |
-
|
570 |
-
st.write(f'Summary for {selected_entity["Name"][0]}')
|
571 |
-
st.write(summary_entity)
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("51la5/roberta-large-NER")
|
5 |
+
model = AutoModelForTokenClassification.from_pretrained("51la5/roberta-large-NER")
|
6 |
+
classifier = pipeline("ner", model=model, tokenizer=tokenizer,grouped_entities=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
def get_ner(text):
|
9 |
+
output = classifier(text)
|
10 |
+
for elm in output:
|
11 |
+
elm['entity'] = elm['entity_group']
|
12 |
+
return {"text": text, "entities": output}
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
demo = gr.Interface(fn=get_ner,
|
16 |
+
title="Atoqli nomlarni topish(NER)",
|
17 |
+
inputs=gr.Textbox(lines=4, placeholder="Matinni kiriting!", label="Matn*"),
|
18 |
+
outputs=gr.HighlightedText(label="Natija:")
|
19 |
+
)
|
20 |
|
21 |
+
demo.launch()
|
|
|
|
flagged/Output/tmp0n4o_4xk.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmp53qk_28w.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmp5geu50qc.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmpilj11fim.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmpir2yb79m.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmpl1qism4a.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmps39i7gz8.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmpu4xpbklk.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/log.csv
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Input,Output,flag,username,timestamp
|
2 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmp5geu50qc.json,,,2022-12-27 12:42:53.593547
|
3 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmp53qk_28w.json,,,2022-12-27 12:42:58.863873
|
4 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmpir2yb79m.json,,,2022-12-27 12:42:59.338345
|
5 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmpu4xpbklk.json,,,2022-12-27 12:42:59.579644
|
6 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmpl1qism4a.json,,,2022-12-27 12:42:59.767400
|
7 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmp0n4o_4xk.json,,,2022-12-27 12:43:01.036641
|
8 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmpilj11fim.json,,,2022-12-27 12:43:02.413494
|
9 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmps39i7gz8.json,,,2022-12-27 12:43:02.875712
|
requirements.txt
CHANGED
@@ -1,16 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
matplotlib==3.3.4
|
5 |
-
newspaper3k==0.2.8
|
6 |
-
nltk==3.6.1
|
7 |
-
numpy==1.19.5
|
8 |
-
pandas==1.2.4
|
9 |
-
Pillow==9.3.0
|
10 |
-
requests==2.25.1
|
11 |
-
spacy
|
12 |
-
SPARQLWrapper==2.0.0
|
13 |
-
streamlit==1.11.1
|
14 |
-
wikipedia==1.4.0
|
15 |
-
streamlit-aggrid
|
16 |
-
transformers==2.5.0
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|