File size: 3,247 Bytes
99f0fa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0154da
 
 
99f0fa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
def matrix_vector_multiplication_visualization(matrix, vector):
    try:
        # Parse inputs
        matrix = np.array([[float(x) for x in row.split(",")] for row in matrix.split(";")])
        vector = np.array([float(x) for x in vector.split(",")])
        
        # Ensure the matrix is 2x2 and the vector is 2D
        if matrix.shape != (2, 2):
            return "Error: Matrix must be 2x2.", None
        if vector.shape != (2,):
            return "Error: Vector must be 2D.", None
        
        # Perform matrix-vector multiplication
        transformed_vector = np.dot(matrix, vector)
        
        # Create a grid for visualization
        x = np.linspace(-1, 1, 10)
        y = np.linspace(-1, 1, 10)
        X, Y = np.meshgrid(x, y)
        grid = np.vstack([X.flatten(), Y.flatten()])
        transformed_grid = np.dot(matrix, grid).reshape(2, -1, 10)

        # Create the plot
        fig, ax = plt.subplots(figsize=(6, 6))
        
        # Plot the grid before and after transformation
        #for i in range(grid.shape[1]):
        #    ax.plot([grid[0, i], transformed_grid[0, i]], [grid[1, i], transformed_grid[1, i]], 
        #            color="gray", linewidth=0.5, alpha=0.7)
        
        # Plot the original vector
        ax.quiver(0, 0, vector[0], vector[1], angles="xy", scale_units="xy", scale=1, color="red", label="Original Vector")
        
        # Plot the transformed vector
        ax.quiver(0, 0, transformed_vector[0], transformed_vector[1], angles="xy", scale_units="xy", scale=1, color="blue", label="Transformed Vector")
        
        # Plot settings
        ax.axhline(0, color='black', linewidth=0.5)
        ax.axvline(0, color='black', linewidth=0.5)
        ax.set_xlim(-2, 2)
        ax.set_ylim(-2, 2)
        ax.set_aspect('equal')
        ax.grid(True)
        ax.legend()
        ax.set_title("Matrix-Vector Multiplication Visualization")
        
        # Save the plot to a BytesIO object
        buf = BytesIO()
        plt.savefig(buf, format="png")
        buf.seek(0)
        plt.close(fig)
        
        return f"Transformed Vector: {transformed_vector.tolist()}", Image.open(buf)
    except Exception as e:
        return f"Error: {str(e)}", None

# Create the Gradio app
with gr.Blocks() as app:
    gr.Markdown("## Matrix-Vector Multiplication Visualization")
    gr.Markdown("""
    - Enter a **2x2 matrix** as `a,b;c,d` (rows separated by semicolons).
    - Enter a **2D vector** as `x,y`.
    - See the original vector (red), transformed vector (blue), and grid transformation.
    """)

    with gr.Row():
        matrix_input = gr.Textbox(label="Matrix (2x2, e.g., 1,0;0,1)", placeholder="e.g., 1,0;0,1")
        vector_input = gr.Textbox(label="Vector (2D, e.g., 1,1)", placeholder="e.g., 1,1")
    
    output_text = gr.Textbox(label="Result")
    output_image = gr.Image(label="Visualization")
    
    calculate_button = gr.Button("Visualize")
    calculate_button.click(
        fn=matrix_vector_multiplication_visualization,
        inputs=[matrix_input, vector_input],
        outputs=[output_text, output_image]
    )

app.launch()