File size: 12,685 Bytes
99f0fa7 d0154da 99f0fa7 02dd72e 99f0fa7 02dd72e 99f0fa7 02dd72e 99f0fa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
def matrix_vector_multiplication_visualization(matrix, vector):
try:
# Parse inputs
matrix = np.array([[float(x) for x in row.split(",")] for row in matrix.split(";")])
vector = np.array([float(x) for x in vector.split(",")])
# Ensure the matrix is 2x2 and the vector is 2D
if matrix.shape != (2, 2):
return "Error: Matrix must be 2x2.", None
if vector.shape != (2,):
return "Error: Vector must be 2D.", None
# Perform matrix-vector multiplication
transformed_vector = np.dot(matrix, vector)
# Create a grid for visualization
x = np.linspace(-1, 1, 10)
y = np.linspace(-1, 1, 10)
X, Y = np.meshgrid(x, y)
grid = np.vstack([X.flatten(), Y.flatten()])
transformed_grid = np.dot(matrix, grid).reshape(2, -1, 10)
# Create the plot
fig, ax = plt.subplots(figsize=(6, 6))
# Plot the grid before and after transformation
#for i in range(grid.shape[1]):
# ax.plot([grid[0, i], transformed_grid[0, i]], [grid[1, i], transformed_grid[1, i]],
# color="gray", linewidth=0.5, alpha=0.7)
# Plot the original vector
ax.quiver(0, 0, vector[0], vector[1], angles="xy", scale_units="xy", scale=1, color="red", label="Original Vector")
# Plot the transformed vector
ax.quiver(0, 0, transformed_vector[0], transformed_vector[1], angles="xy", scale_units="xy", scale=1, color="blue", label="Transformed Vector")
# Plot settings
ax.axhline(0, color='black', linewidth=0.5)
ax.axvline(0, color='black', linewidth=0.5)
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
ax.set_aspect('equal')
ax.grid(True)
ax.legend()
ax.set_title("Matrix-Vector Multiplication Visualization")
# Save the plot to a BytesIO object
buf = BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
plt.close(fig)
return f"Transformed Vector: {transformed_vector.tolist()}", Image.open(buf)
except Exception as e:
return f"Error: {str(e)}", None
def visualize_points_and_vectors_with_start(points, vectors):
try:
# Parse points
points = [list(map(float, p.split(','))) for p in points.split(';') if p.strip()]
# Parse vectors with starting points
vectors_with_start = [
list(map(float, v.split(','))) for v in vectors.split(';') if v.strip()
]
# Create the plot
fig, ax = plt.subplots(figsize=(6, 6))
# Plot points
for point in points:
ax.plot(point[0], point[1], 'o', label=f"Point ({point[0]}, {point[1]})")
# Plot vectors with starting points
for vector in vectors_with_start:
if len(vector) == 4: # Check format [start_x, start_y, vector_x, vector_y]
start_x, start_y, vec_x, vec_y = vector
ax.quiver(
start_x, start_y, vec_x, vec_y, angles='xy', scale_units='xy', scale=1,
color='r', label=f"Vector from ({start_x},{start_y}) to ({start_x+vec_x},{start_y+vec_y})"
)
# Plot settings
ax.axhline(0, color='black', linewidth=0.5)
ax.axvline(0, color='black', linewidth=0.5)
ax.set_xlim(-10, 10)
ax.set_ylim(-10, 10)
ax.set_aspect('equal')
ax.grid(True)
ax.legend()
ax.set_title("Points and Vectors Visualization")
# Save the plot to a BytesIO object
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close(fig)
return Image.open(buf)
except Exception as e:
return f"Error: {str(e)}"
def calculate_dot_product_and_angle(vector1, vector2):
try:
# Convert input strings to numpy arrays
vec1 = np.array([float(x) for x in vector1.split(",")])
vec2 = np.array([float(x) for x in vector2.split(",")])
# Check if vectors have the same length
if len(vec1) != len(vec2):
return "Error: Vectors must have the same length.", None
# Compute the dot product
dot_product = np.dot(vec1, vec2)
# Compute magnitudes of vectors
magnitude_vec1 = np.linalg.norm(vec1)
magnitude_vec2 = np.linalg.norm(vec2)
# Normalized dot product
normalized_dot_product = dot_product / (magnitude_vec1 * magnitude_vec2)
# Compute the angle in radians and convert to degrees
angle_radians = np.arccos(np.clip(normalized_dot_product, -1.0, 1.0))
angle_degrees = np.degrees(angle_radians)
explanation = (
f"Dot product: {dot_product}\n"
f"Normalized dot product: {normalized_dot_product:.4f}\n"
f"Angle (radians): {angle_radians:.4f}\n"
f"Angle (degrees): {angle_degrees:.4f}"
)
# Plot the vectors
fig, ax = plt.subplots(figsize=(6, 6))
ax.quiver(0, 0, vec1[0], vec1[1], angles='xy', scale_units='xy', scale=1, color='r', label="Vector 1")
ax.quiver(0, 0, vec2[0], vec2[1], angles='xy', scale_units='xy', scale=1, color='b', label="Vector 2")
# Plot settings
ax.set_xlim(-max(abs(vec1[0]), abs(vec2[0])) - 1, max(abs(vec1[0]), abs(vec2[0])) + 1)
ax.set_ylim(-max(abs(vec1[1]), abs(vec2[1])) - 1, max(abs(vec1[1]), abs(vec2[1])) + 1)
ax.axhline(0, color='black', linewidth=0.5)
ax.axvline(0, color='black', linewidth=0.5)
ax.set_aspect('equal')
ax.grid(True)
ax.legend()
ax.set_title("Vector Visualization")
# Save plot to a BytesIO object
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close(fig)
return explanation, Image.open(buf)
except ValueError:
return "Error: Please enter valid numeric values separated by commas.", None
def transformation_composition_with_vectors(matrix1, matrix2, vectors):
try:
# Parse input matrices
matrix1 = np.array([[float(x) for x in row.split(",")] for row in matrix1.split(";")])
matrix2 = np.array([[float(x) for x in row.split(",")] for row in matrix2.split(";")])
# Ensure both matrices are 2x2
if matrix1.shape != (2, 2) or matrix2.shape != (2, 2):
return "Error: Both matrices must be 2x2.", None
# Parse vectors
vectors = np.array([[float(x) for x in vector.split(",")] for vector in vectors.split(";")]).T
if vectors.shape[0] != 2:
return "Error: Vectors must be 2D (two components per vector).", None
# Compute the transformations
vectors_after_matrix1 = np.dot(matrix1, vectors)
vectors_after_composition = np.dot(np.dot(matrix2, matrix1), vectors)
# Plot the transformations
fig, ax = plt.subplots(figsize=(8, 8))
# Plot original vectors
for vector in vectors.T:
ax.quiver(0, 0, vector[0], vector[1], angles='xy', scale_units='xy', scale=1, color="gray", alpha=0.7)
# Plot vectors after Matrix 1
for vector in vectors_after_matrix1.T:
ax.quiver(0, 0, vector[0], vector[1], angles='xy', scale_units='xy', scale=1, color="orange", alpha=0.7)
# Plot vectors after composition
for vector in vectors_after_composition.T:
ax.quiver(0, 0, vector[0], vector[1], angles='xy', scale_units='xy', scale=1, color="blue", alpha=0.7)
# Add legend
ax.legend(["Original Vectors", "After Matrix 1", "After Matrix 2 × Matrix 1"], loc="upper left")
# Axes settings
ax.axhline(0, color="black", linewidth=0.5)
ax.axvline(0, color="black", linewidth=0.5)
ax.set_xlim(-3, 3)
ax.set_ylim(-3, 3)
ax.set_aspect("equal")
ax.grid(True)
ax.set_title("Matrix-Matrix Multiplication as Transformation Composition")
# Save the plot
buf = BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
plt.close(fig)
return "Success", Image.open(buf)
except Exception as e:
return f"Error: {str(e)}", None
# Create the Gradio app
with gr.Blocks() as app:
with gr.Tab("Points vs. Vectors"):
gr.Markdown("## Points and Vectors Visualization with Starting Points")
gr.Markdown("""
- **Points**: Enter semicolon-separated 2D points, e.g., `1,2; 3,4`.
- **Vectors**: Enter vectors with starting points in the format `start_x,start_y,vector_x,vector_y; ...`, e.g., `0,0,2,1; 3,4,-1,2`.
""")
with gr.Row():
points_input = gr.Textbox(label="Points (semicolon-separated)", placeholder="e.g., 1,2; 3,4")
vectors_input = gr.Textbox(label="Vectors (with starting points)", placeholder="e.g., 0,0,2,1; 3,4,-1,2")
output_image = gr.Image(label="Visualization")
visualize_button = gr.Button("Visualize")
visualize_button.click(
fn=visualize_points_and_vectors_with_start,
inputs=[points_input, vectors_input],
outputs=output_image
)
with gr.Tab("Vector Dot Product"):
gr.Markdown("## Dot Product, Normalized Dot Product, and Angle Calculator")
gr.Markdown("Enter two vectors (comma-separated) to calculate their dot product, normalized dot product, and angle.")
with gr.Row():
vector1_input = gr.Textbox(label="Vector 1", placeholder="e.g., 1, 2")
vector2_input = gr.Textbox(label="Vector 2", placeholder="e.g., 4, 5")
output_text = gr.Textbox(label="Result", lines=6)
output_image = gr.Image(label="Visualization")
calculate_button = gr.Button("Calculate and Visualize")
calculate_button.click(
fn=calculate_dot_product_and_angle,
inputs=[vector1_input, vector2_input],
outputs=[output_text, output_image]
)
with gr.Tab("Matrix-Vector Multiplication"):
gr.Markdown("## Matrix-Vector Multiplication Visualization")
gr.Markdown("""
- Enter a **2x2 matrix** as `a,b;c,d` (rows separated by semicolons).
- Enter a **2D vector** as `x,y`.
- See the original vector (red), transformed vector (blue), and grid transformation.
""")
with gr.Row():
matrix_input = gr.Textbox(label="Matrix (2x2, e.g., 1,0;0,1)", placeholder="e.g., 1,0;0,1")
vector_input = gr.Textbox(label="Vector (2D, e.g., 1,1)", placeholder="e.g., 1,1")
output_text = gr.Textbox(label="Result")
output_image = gr.Image(label="Visualization")
calculate_button = gr.Button("Visualize")
calculate_button.click(
fn=matrix_vector_multiplication_visualization,
inputs=[matrix_input, vector_input],
outputs=[output_text, output_image]
)
with gr.Tab('Matrix-Matrix Multiplication'):
gr.Markdown("## Matrix Multiplication as Transformation Composition (Using Vectors)")
gr.Markdown("""
- Enter two **2x2 matrices** in the format `a,b;c,d` (rows separated by semicolons).
- Enter vectors in the format `x1,y1;x2,y2;...` (semicolon-separated pairs).
- The app will show:
- The original vectors.
- The vectors after applying **Matrix 1**.
- The vectors after applying the composition (**Matrix 2 × Matrix 1**).
""")
with gr.Row():
matrix1_input = gr.Textbox(label="Matrix 1 (2x2, e.g., 1,0;0,1)", placeholder="e.g., 1,0;0,1")
matrix2_input = gr.Textbox(label="Matrix 2 (2x2, e.g., 2,0;0,1)", placeholder="e.g., 2,0;0,1")
vectors_input = gr.Textbox(label="Vectors (e.g., 1,0;0,1)", placeholder="e.g., 1,0;0,1")
output_text = gr.Textbox(label="Output")
output_image = gr.Image(label="Visualization")
calculate_button = gr.Button("Visualize")
calculate_button.click(
fn=transformation_composition_with_vectors,
inputs=[matrix1_input, matrix2_input, vectors_input],
outputs=[output_text, output_image]
)
app.launch() |