import os import gradio as gr import spaces from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer from threading import Thread # Set an environment variable HF_TOKEN = os.environ.get("HF_TOKEN", None) model_id = "rinna/llama-3-youko-8b-instruct" DESCRIPTION = """

🦊 Llama 3 Youko 8B Instruct (rinna/llama-3-youko-8b-instruct)は、rinna株式会社Meta Llama 3 8Bに日本語継続事前学習およびインストラクションチューニングを行った大規模言語モデルです.Llama 3 8Bの優れたパフォーマンスを日本語に引き継いでおり、日本語のチャットにおいて高い性能を示しています。

🤖 このデモでは、Llama 3 Youko 8B Instructとチャットを行うことが可能です。

📄 モデルの詳細については、プレスリリース、および、ベンチマークをご覧ください。お問い合わせはこちらまでどうぞ。

""" LICENSE = """ ---

Built with Meta Llama 3

License: Meta Llama 3 Community License

This space is implemented based on ysharma/Chat_with_Meta_llama3_8b.

""" PLACEHOLDER = """

Llama 3 Youko

""" css = """ h1 { text-align: center; display: block; } #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } """ # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") terminators = [ tokenizer.convert_tokens_to_ids("<|end_of_text|>"), tokenizer.convert_tokens_to_ids("<|eot_id|>") ] @spaces.GPU(duration=120) def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int ) -> str: """ Generate a streaming response using the llama3-8b model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ conversation = [] conversation.append({"role": "system", "content": "あなたは誠実で優秀なアシスタントです。どうか、簡潔かつ正直に答えてください。"}) for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) # Need to set add_generation_prompt=True to ensure the model generates the response. input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, repetition_penalty=1.1, eos_token_id=terminators, ) # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Gradio block chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') with gr.Blocks(fill_height=True, css=css) as demo: gr.Markdown(DESCRIPTION) gr.ChatInterface( fn=chat_llama3_8b, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ パラメータ", open=False, render=False), additional_inputs=[ gr.Slider(minimum=0, maximum=1, step=0.05, value=0.9, label="生成時におけるサンプリングの温度(ランダム性)", render=False), gr.Slider(minimum=128, maximum=4096, step=1, value=512, label="生成したい最大のトークン数", render=False), ], examples=[ ["日本で有名なものと言えば"], ["ネコ: 「お腹が減ったニャ」\nイヌ: 「\nで始まる物語を書いて"], ["C言語で素数を判定するコードを書いて"], ["人工知能とは何ですか"], ], cache_examples=False, ) gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch()