File size: 1,249 Bytes
ab86870
 
3680a42
ab86870
3680a42
 
 
 
2a4edc1
 
 
3680a42
2a4edc1
ab86870
7fb7b85
 
13cba81
 
01ca18e
13cba81
f7750ee
01ca18e
fc4cc2c
13cba81
892e1e5
 
1694eaa
892e1e5
01ca18e
ab86870
 
 
7fb7b85
0eed6d3
 
8937d91
0eed6d3
ab86870
 
01ca18e
ab86870
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
from transformers import pipeline
import torch

# Check if a GPU is available
device = 0 if torch.cuda.is_available() else -1

# Load the text-generation pipeline with the appropriate device
model = pipeline(
    "text-generation",
    model="rish13/polymers",
    device=device  # Automatically use GPU if available, otherwise CPU
)

def generate_response(prompt):
    # Generate text from the model
    response = model(
        prompt, 
        max_length=100,  # Adjusted to generate shorter text
        num_return_sequences=1, 
        temperature=0.7,  # Increased to add more randomness
        top_k=100,  # Increased to allow a wider selection of words
        top_p=0.95  # Slightly increased cumulative probability threshold
    )
    
    # Get the generated text from the response
    generated_text = response[0]['generated_text']
    
    return generated_text

# Define the Gradio interface
interface = gr.Interface(
    fn=generate_response,
    inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"),
    outputs="text",
    title="Polymer Knowledge Model",
    description="A model fine-tuned for generating text related to polymers."
)

# Launch the interface
interface.launch()