File size: 1,248 Bytes
ab86870
 
3680a42
ab86870
bbfcb0d
3680a42
 
 
2a4edc1
 
 
3680a42
2a4edc1
ab86870
7fb7b85
 
13cba81
 
e1edd9d
13cba81
e1edd9d
01ca18e
fc4cc2c
13cba81
892e1e5
 
1694eaa
892e1e5
01ca18e
ab86870
 
 
7fb7b85
0eed6d3
 
8937d91
0eed6d3
ab86870
 
01ca18e
ab86870
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
from transformers import pipeline
import torch

# Check if a GPU is available
device = 0 if torch.cuda.is_available() else -1

# Load the text-generation pipeline with the appropriate device
model = pipeline(
    "text-generation",
    model="rish13/polymers",
    device=device  # Automatically use GPU if available, otherwise CPU
)

def generate_response(prompt):
    # Generate text from the model
    response = model(
        prompt, 
        max_length=70,  # Adjusted to generate shorter text
        num_return_sequences=1, 
        temperature=0.6,  # Increased to add more randomness
        top_k=100,  # Increased to allow a wider selection of words
        top_p=0.95  # Slightly increased cumulative probability threshold
    )
    
    # Get the generated text from the response
    generated_text = response[0]['generated_text']
    
    return generated_text

# Define the Gradio interface
interface = gr.Interface(
    fn=generate_response,
    inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"),
    outputs="text",
    title="Polymer Knowledge Model",
    description="A model fine-tuned for generating text related to polymers."
)

# Launch the interface
interface.launch()