|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
model = pipeline("text-generation", model="rish13/polymers") |
|
|
|
def generate_response(prompt): |
|
|
|
response = model(prompt, max_length=150, num_return_sequences=1) |
|
generated_text = response[0]['generated_text'] |
|
|
|
|
|
end_punctuation = ['.', '!', '?'] |
|
end_position = min((generated_text.find(punct) for punct in end_punctuation if punct in generated_text), default=-1) |
|
|
|
if end_position != -1: |
|
|
|
generated_text = generated_text[:end_position + 1] |
|
|
|
return generated_text |
|
|
|
|
|
interface = gr.Interface( |
|
fn=generate_response, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"), |
|
outputs="text", |
|
title="Polymer Knowledge Model", |
|
description="A model fine-tuned for generating text related to polymers." |
|
) |
|
|
|
|
|
interface.launch() |
|
|