ABITWISER / main.py
rishabh5752's picture
Upload 78 files
edd1ad2
raw
history blame
6.35 kB
import chainlit as cl
from langchain import OpenAI, LLMChain
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import StringPromptTemplate
from langchain.tools import DuckDuckGoSearchRun
from typing import List, Union
from langchain.schema import AgentAction, AgentFinish
import re
import os
from credentials import OPENAI_API_KEY
from templates import template_for_has_cancer, template_for_does_not_have_cancer
from utils import cancer_category
from app import predict
from PIL import Image
import io
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
search = DuckDuckGoSearchRun()
def duck_wrapper(input_text):
search_results = search.run(f"{input_text}")
return search_results
tools = [
Tool(
name = "Search",
func=duck_wrapper,
description="useful for when you need to answer medical and pharmalogical questions"
)
]
def call_detection_model(index):
results = [
{
"has_cancer":False,
"chances_of_having_cancer":8.64
},
{
"has_cancer":True,
"chances_of_having_cancer":97.89
},
{
"has_cancer":False,
"chances_of_having_cancer":2.78
}
]
return results[index]
class CustomPromptTemplate(StringPromptTemplate):
# The template to use
template: str
# The list of tools available
tools: List[Tool]
def format(self, **kwargs) -> str:
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
return self.template.format(**kwargs)
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
template = None
prompt_with_history = None
from contextlib import redirect_stdout
@cl.on_chat_start
async def main():
cl.user_session.set("index", 0)
cl.user_session.set("has_uploaded_image", False)
await cl.Message("Upload image of your condition").send()
@cl.on_file_upload(accept=['image/png'])
async def main(file:any):
index = cl.user_session.get("index")
file = file[0]["content"]
image_stream = io.BytesIO(file)
image = Image.open(image_stream)
image = image.convert('RGB')
image = image.resize((150, 150))
image.save("image.png", 'png')
results = call_detection_model(index)
cl.user_session.set("index", index+1)
image.close()
cl.user_session.set("results", results)
if results["has_cancer"]:
cl.user_session.set("template", template_for_has_cancer)
else:
cl.user_session.set("template", template_for_does_not_have_cancer)
prompt_with_history = CustomPromptTemplate(
template=cl.user_session.get("template"),
tools=tools,
input_variables=["input", "intermediate_steps", "history"]
)
llm_chain = LLMChain(prompt = prompt_with_history,llm=OpenAI(temperature=1.2,streaming=True),verbose=True)
tool_names = [tool.name for tool in tools]
output_parser = CustomOutputParser()
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
memory=ConversationBufferWindowMemory(k=2)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
verbose=True,
memory=memory
)
cl.user_session.set("agent_executor", agent_executor)
cl.user_session.set("has_uploaded_image", True)
await cl.Message("Image has been uploaded and analyzing...\n").send()
@cl.on_message
async def main(message : str):
has_uploaded_image = cl.user_session.get("has_uploaded_image")
results = cl.user_session.get("results")
if has_uploaded_image == False:
await cl.Message("Please upload a relevent image to proceed with this conversation").send()
return
if "result" in message or "results" in message:
msg = f"These results are a good estimation but its not meant to replace human medical intervention and should be taken with a grain of salt. According to the image uploaded, your chances of having skin cancer are {results['chances_of_having_cancer']}% and your condition lies in the {cancer_category(results['chances_of_having_cancer'])} range. "
if cancer_category(results["chances_of_having_cancer"]) != "Pre Benign":
msg += "You should consider vising the doctor for a complete checkup."
await cl.Message(msg).send()
return
agent_executor = cl.user_session.get("agent_executor")
res = agent_executor.run(message)
await cl.Message(res).send()