Rishabh IO
commited on
Commit
·
5f1f14e
1
Parent(s):
6595181
First deploy to HF Spaces
Browse files- Dockerfile +22 -0
- LICENSE +21 -0
- README.md +193 -11
- main.py +47 -0
- model.joblib +0 -0
- model.py +25 -0
- requirements.txt +17 -0
- static/index.html +115 -0
Dockerfile
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
# Use Python base image
|
4 |
+
FROM --platform=linux/amd64 python:latest
|
5 |
+
|
6 |
+
# Set working directory in the container
|
7 |
+
WORKDIR /app
|
8 |
+
|
9 |
+
# Copy requirements.txt to container
|
10 |
+
COPY requirements.txt .
|
11 |
+
|
12 |
+
# Install dependencies
|
13 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
14 |
+
|
15 |
+
# Copy the FastAPI app files to the container
|
16 |
+
COPY . /app
|
17 |
+
|
18 |
+
# Expose port 80 for FastAPI app
|
19 |
+
EXPOSE 7860
|
20 |
+
|
21 |
+
# Command to start the FastAPI app
|
22 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 rishabh.io
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,11 +1,193 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# packaging-ml-model
|
2 |
+
Learn how to package a machine learning model into a container
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
# Steps to use the repository
|
7 |
+
|
8 |
+
1. Clone the repository
|
9 |
+
2. Create a virtual environment ( to isolate the dependencies )
|
10 |
+
3. Install the requirements with the following command:
|
11 |
+
|
12 |
+
```
|
13 |
+
|
14 |
+
pip install -r requirements.txt
|
15 |
+
```
|
16 |
+
|
17 |
+
# Build the model file
|
18 |
+
1. Execute the following command to build the model
|
19 |
+
|
20 |
+
```
|
21 |
+
python model.py
|
22 |
+
|
23 |
+
```
|
24 |
+
|
25 |
+
- This will build the model and serialize it into a file called
|
26 |
+
as model.joblib, this is what we'll load into memory when we
|
27 |
+
build our inference API via fastAPI
|
28 |
+
|
29 |
+
# Build a fastAPI based app
|
30 |
+
|
31 |
+
- The source code for this is available in the app.py file
|
32 |
+
- You can check whether it's working by executing the following
|
33 |
+
command:
|
34 |
+
|
35 |
+
```
|
36 |
+
uvicorn main:app --reload
|
37 |
+
|
38 |
+
```
|
39 |
+
|
40 |
+
# Generate a Docker file
|
41 |
+
|
42 |
+
Generate Dockerfile in the same directory as the app and add the
|
43 |
+
following contents to it:
|
44 |
+
|
45 |
+
```
|
46 |
+
|
47 |
+
# Use Python base image
|
48 |
+
FROM python:3.9-slim
|
49 |
+
|
50 |
+
# Set working directory in the container
|
51 |
+
WORKDIR /app
|
52 |
+
|
53 |
+
# Copy requirements.txt to container
|
54 |
+
COPY requirements.txt .
|
55 |
+
|
56 |
+
# Install dependencies
|
57 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
58 |
+
|
59 |
+
# Copy the FastAPI app files to the container
|
60 |
+
COPY app /app
|
61 |
+
|
62 |
+
# Expose port 80 for FastAPI app
|
63 |
+
EXPOSE 80
|
64 |
+
|
65 |
+
# Command to start the FastAPI app
|
66 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"]
|
67 |
+
|
68 |
+
```
|
69 |
+
|
70 |
+
# Build the Docker Image from the instructions given in the Dockerfile
|
71 |
+
|
72 |
+
```
|
73 |
+
docker build -t packaged-model-001 .
|
74 |
+
```
|
75 |
+
|
76 |
+
# Build the container out of the image
|
77 |
+
```
|
78 |
+
docker run -p 8000:80 packaged-model-001
|
79 |
+
```
|
80 |
+
|
81 |
+
|
82 |
+
# Verify whether the container is running
|
83 |
+
|
84 |
+
- Use postman to call the post end-point available at localhost:8000/predict
|
85 |
+
|
86 |
+
```
|
87 |
+
|
88 |
+
{
|
89 |
+
"sepal_length": 2,
|
90 |
+
"sepal_width": 3.0,
|
91 |
+
"petal_length": 4.0,
|
92 |
+
"petal_width": 1.5
|
93 |
+
}
|
94 |
+
|
95 |
+
```
|
96 |
+
|
97 |
+
|
98 |
+
# push the image to docker registry
|
99 |
+
|
100 |
+
1. Login to Docker
|
101 |
+
|
102 |
+
```
|
103 |
+
|
104 |
+
docker login
|
105 |
+
|
106 |
+
```
|
107 |
+
|
108 |
+
- The above command should show text like the following:
|
109 |
+
|
110 |
+
```
|
111 |
+
Log in with your Docker ID or email address to push and pull images from Docker Hub. If you don't have a Docker ID, head over to https://hub.docker.com/ to create one.
|
112 |
+
You can log in with your password or a Personal Access Token (PAT). Using a limited-scope PAT grants better security and is required for organizations using SSO. Learn more at https://docs.docker.com/go/access-tokens/
|
113 |
+
|
114 |
+
Username:
|
115 |
+
```
|
116 |
+
|
117 |
+
- Use the PAT as the password
|
118 |
+
** Note: You can also use your password but the use of PAT with minimal access is recommended.
|
119 |
+
|
120 |
+
|
121 |
+
# Create a repository on DockerHub
|
122 |
+
|
123 |
+
```
|
124 |
+
1. Go to Dockerhub ( search on Google )
|
125 |
+
|
126 |
+
2. Create an Account if not already existing
|
127 |
+
|
128 |
+
3. Create a new Repository
|
129 |
+
|
130 |
+
```
|
131 |
+
|
132 |
+
|
133 |
+
# Tag your local image
|
134 |
+
|
135 |
+
```
|
136 |
+
|
137 |
+
docker tag packaged-model-001:latest riio/packaged-model-001:latest
|
138 |
+
|
139 |
+
```
|
140 |
+
|
141 |
+
|
142 |
+
## Push the image to DockerHub
|
143 |
+
|
144 |
+
```
|
145 |
+
docker push riio/packaged-model-001:latest
|
146 |
+
```
|
147 |
+
|
148 |
+
|
149 |
+
## Sample Output:
|
150 |
+
|
151 |
+
```
|
152 |
+
|
153 |
+
(venv) username@machine packaging-ml-model % docker push riio/packaged-model-001:latest
|
154 |
+
The push refers to repository [docker.io/riio/packaged-model-001]
|
155 |
+
fd749012a9d2: Pushed
|
156 |
+
963141bae3f4: Pushing 253.5MB
|
157 |
+
4f83a3ffc58c: Pushed
|
158 |
+
7b34bc82ecfd: Pushed
|
159 |
+
b958f60e4e67: Pushed
|
160 |
+
f02ce41627b1: Pushed
|
161 |
+
eeac00a5e55e: Pushed
|
162 |
+
34e7752745be: Pushed
|
163 |
+
8560597d922c: Pushing 100.2MB
|
164 |
+
```
|
165 |
+
|
166 |
+
|
167 |
+
## Congratulations.
|
168 |
+
|
169 |
+
- You just packaged your machine learning model and made it available to the world with the power of containers.
|
170 |
+
|
171 |
+
## How anybody can use your packaged model?
|
172 |
+
|
173 |
+
It's simple
|
174 |
+
|
175 |
+
```
|
176 |
+
docker pull riio/packaged-model-001:latest
|
177 |
+
|
178 |
+
```
|
179 |
+
|
180 |
+
|
181 |
+
## How to run the container ?
|
182 |
+
|
183 |
+
```
|
184 |
+
|
185 |
+
docker run -p 8000:80 riio/packaged-model-001:latest
|
186 |
+
```
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
# Link to access the Container:
|
191 |
+
|
192 |
+
|
193 |
+
- https://model-deployment-005.purplecliff-0cc0d310.centralindia.azurecontainerapps.io/predict
|
main.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
# app/main.py
|
5 |
+
|
6 |
+
from fastapi import FastAPI
|
7 |
+
from pydantic import BaseModel
|
8 |
+
from joblib import load
|
9 |
+
import numpy as np
|
10 |
+
from fastapi.responses import HTMLResponse
|
11 |
+
|
12 |
+
|
13 |
+
# Define FastAPI app
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# Load the trained model
|
17 |
+
model = load("model.joblib")
|
18 |
+
|
19 |
+
# Define request body schema using Pydantic BaseModel
|
20 |
+
class Item(BaseModel):
|
21 |
+
sepal_length: float
|
22 |
+
sepal_width: float
|
23 |
+
petal_length: float
|
24 |
+
petal_width: float
|
25 |
+
|
26 |
+
# Define endpoint to make predictions
|
27 |
+
@app.post("/predict")
|
28 |
+
async def predict(item: Item):
|
29 |
+
# Convert input to array
|
30 |
+
input_data = [item.sepal_length, item.sepal_width, item.petal_length, item.petal_width]
|
31 |
+
input_array = np.array([input_data])
|
32 |
+
|
33 |
+
# Make prediction
|
34 |
+
prediction = model.predict(input_array)[0]
|
35 |
+
|
36 |
+
# Map prediction to class label
|
37 |
+
class_label = {0: "setosa", 1: "versicolor", 2: "virginica"}
|
38 |
+
predicted_class = class_label[prediction]
|
39 |
+
|
40 |
+
# Return prediction
|
41 |
+
return {"predicted_class": predicted_class}
|
42 |
+
|
43 |
+
|
44 |
+
@app.get('/app', response_class=HTMLResponse)
|
45 |
+
async def html():
|
46 |
+
content = open('static/index.html', 'r')
|
47 |
+
return content.read()
|
model.joblib
ADDED
Binary file (187 kB). View file
|
|
model.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# app/model.py
|
3 |
+
|
4 |
+
from sklearn.datasets import load_iris
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.ensemble import RandomForestClassifier
|
7 |
+
from joblib import dump
|
8 |
+
|
9 |
+
# Load the Iris dataset
|
10 |
+
iris = load_iris()
|
11 |
+
X, y = iris.data, iris.target
|
12 |
+
|
13 |
+
# Split the dataset into training and testing sets
|
14 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
15 |
+
|
16 |
+
# Train a Random Forest classifier
|
17 |
+
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
18 |
+
model.fit(X_train, y_train)
|
19 |
+
|
20 |
+
# Evaluate the model
|
21 |
+
accuracy = model.score(X_test, y_test)
|
22 |
+
print("Model accuracy:", accuracy)
|
23 |
+
|
24 |
+
# Save the trained model as a joblib file
|
25 |
+
dump(model, "model.joblib")
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
annotated-types==0.6.0
|
2 |
+
anyio==4.3.0
|
3 |
+
click==8.1.7
|
4 |
+
fastapi==0.110.3
|
5 |
+
h11==0.14.0
|
6 |
+
idna==3.7
|
7 |
+
joblib==1.4.0
|
8 |
+
numpy==1.26.4
|
9 |
+
pydantic==2.7.1
|
10 |
+
pydantic_core==2.18.2
|
11 |
+
scikit-learn==1.4.2
|
12 |
+
scipy==1.13.0
|
13 |
+
sniffio==1.3.1
|
14 |
+
starlette==0.37.2
|
15 |
+
threadpoolctl==3.5.0
|
16 |
+
typing_extensions==4.11.0
|
17 |
+
uvicorn==0.29.0
|
static/index.html
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Flower Predictor</title>
|
7 |
+
<style>
|
8 |
+
body {
|
9 |
+
font-family: Arial, sans-serif;
|
10 |
+
margin: 0;
|
11 |
+
padding: 0;
|
12 |
+
display: flex;
|
13 |
+
justify-content: center;
|
14 |
+
align-items: center;
|
15 |
+
height: 100vh;
|
16 |
+
background-color: #f2f2f2;
|
17 |
+
}
|
18 |
+
|
19 |
+
form {
|
20 |
+
background-color: #fff;
|
21 |
+
padding: 20px;
|
22 |
+
border-radius: 10px;
|
23 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
24 |
+
}
|
25 |
+
|
26 |
+
label {
|
27 |
+
display: block;
|
28 |
+
margin-bottom: 10px;
|
29 |
+
}
|
30 |
+
|
31 |
+
input[type="text"] {
|
32 |
+
width: 100%;
|
33 |
+
padding: 10px;
|
34 |
+
margin-bottom: 20px;
|
35 |
+
border: 1px solid #ccc;
|
36 |
+
border-radius: 5px;
|
37 |
+
box-sizing: border-box;
|
38 |
+
}
|
39 |
+
|
40 |
+
input[type="submit"] {
|
41 |
+
background-color: #4CAF50;
|
42 |
+
color: white;
|
43 |
+
padding: 10px 20px;
|
44 |
+
border: none;
|
45 |
+
border-radius: 5px;
|
46 |
+
cursor: pointer;
|
47 |
+
}
|
48 |
+
|
49 |
+
input[type="submit"]:hover {
|
50 |
+
background-color: #45a049;
|
51 |
+
}
|
52 |
+
</style>
|
53 |
+
</head>
|
54 |
+
<body>
|
55 |
+
<div>
|
56 |
+
<h1>Flower Predictor</h1>
|
57 |
+
<p>Enter the flower measurements to predict the class of the flower.</p>
|
58 |
+
<p> The predicted class is: <span id="predicted_class"></span> </p>
|
59 |
+
</div>
|
60 |
+
<form id="flowerForm">
|
61 |
+
<label for="petal_length">Petal Length:</label>
|
62 |
+
<input type="text" id="petal_length" name="petal_length" required>
|
63 |
+
|
64 |
+
<label for="sepal_length">Sepal Length:</label>
|
65 |
+
<input type="text" id="sepal_length" name="sepal_length" required>
|
66 |
+
|
67 |
+
<label for="petal_width">Petal Width:</label>
|
68 |
+
<input type="text" id="petal_width" name="petal_width" required>
|
69 |
+
|
70 |
+
<label for="sepal_width">Sepal Width:</label>
|
71 |
+
<input type="text" id="sepal_width" name="sepal_width" required>
|
72 |
+
|
73 |
+
<input type="submit" value="Predict">
|
74 |
+
</form>
|
75 |
+
|
76 |
+
<script>
|
77 |
+
document.getElementById("flowerForm").addEventListener("submit", function(event) {
|
78 |
+
event.preventDefault(); // Prevent default form submission
|
79 |
+
|
80 |
+
// Prepare data for API call
|
81 |
+
const formData = new FormData(event.target);
|
82 |
+
const requestData = {};
|
83 |
+
formData.forEach((value, key) => {
|
84 |
+
requestData[key] = value;
|
85 |
+
});
|
86 |
+
|
87 |
+
// Make API call
|
88 |
+
fetch("/predict", {
|
89 |
+
method: "POST",
|
90 |
+
headers: {
|
91 |
+
"Content-Type": "application/json"
|
92 |
+
},
|
93 |
+
body: JSON.stringify(requestData)
|
94 |
+
})
|
95 |
+
.then(response => {
|
96 |
+
if (!response.ok) {
|
97 |
+
throw new Error("Network response was not ok");
|
98 |
+
}
|
99 |
+
return response.json();
|
100 |
+
})
|
101 |
+
.then(data => {
|
102 |
+
// Handle API response here
|
103 |
+
console.log(data);
|
104 |
+
document.getElementById("predicted_class").innerText = data.predicted_class;
|
105 |
+
// alert("Prediction: " + data.predicted_class);
|
106 |
+
})
|
107 |
+
.catch(error => {
|
108 |
+
console.error("Error:", error);
|
109 |
+
alert("An error occurred. Please try again.");
|
110 |
+
});
|
111 |
+
});
|
112 |
+
</script>
|
113 |
+
|
114 |
+
</body>
|
115 |
+
</html>
|