Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,6 @@ model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
|
|
28 |
with open("technical_interviewer_prompt.txt", "r") as file:
|
29 |
technical_interviewer_prompt = file.read()
|
30 |
|
31 |
-
# Load prompts from files
|
32 |
with open("question_generation_prompt.txt", "r") as file:
|
33 |
question_generation_prompt = file.read()
|
34 |
|
@@ -39,61 +38,44 @@ if "messages" not in st.session_state:
|
|
39 |
st.session_state.messages = []
|
40 |
|
41 |
if "follow_up_mode" not in st.session_state:
|
42 |
-
st.session_state.follow_up_mode = False
|
43 |
|
44 |
if "generated_question" not in st.session_state:
|
45 |
-
st.session_state.generated_question = None
|
46 |
|
47 |
if "debug_logs" not in st.session_state:
|
48 |
-
st.session_state.debug_logs = []
|
49 |
|
50 |
# Function to find the top 1 most similar question based on user input
|
51 |
def find_top_question(query):
|
52 |
-
# Generate embedding for the query
|
53 |
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
# Compute cosine similarity between query embedding and dataset embeddings
|
59 |
-
similarities = cosine_similarity(query_embedding, embeddings).flatten() # Flatten to get a 1D array of similarities
|
60 |
-
|
61 |
-
# Get the index of the most similar result (top 1)
|
62 |
-
top_index = similarities.argsort()[-1] # Index of highest similarity
|
63 |
-
|
64 |
-
# Retrieve metadata for the top result
|
65 |
top_result = metadata.iloc[top_index].copy()
|
66 |
top_result['similarity_score'] = similarities[top_index]
|
67 |
-
|
68 |
return top_result
|
69 |
|
70 |
-
# Function to generate response using OpenAI API
|
71 |
def generate_response(messages):
|
72 |
-
debug_log_entry = {"messages": messages}
|
73 |
-
st.session_state.debug_logs.append(debug_log_entry) # Store debug log
|
74 |
-
|
75 |
response = client.chat.completions.create(
|
76 |
model="o1-mini",
|
77 |
messages=messages,
|
78 |
)
|
79 |
-
|
80 |
return response.choices[0].message.content
|
81 |
|
82 |
# User input form for generating a new question
|
83 |
with st.form(key="input_form"):
|
84 |
-
company = st.text_input("Company", value="Google")
|
85 |
-
difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1)
|
86 |
-
topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking")
|
87 |
-
|
88 |
generate_button = st.form_submit_button(label="Generate")
|
89 |
|
90 |
if generate_button:
|
91 |
-
# Clear session state and
|
92 |
st.session_state.messages = []
|
93 |
st.session_state.follow_up_mode = False
|
94 |
|
95 |
-
st.session_state.messages.append({"role": "user", "content": question_generation_prompt})
|
96 |
-
|
97 |
# Create a query from user inputs and find the most relevant question
|
98 |
query = f"{company} {difficulty} {topic}"
|
99 |
top_question = find_top_question(query)
|
@@ -109,61 +91,55 @@ if generate_button:
|
|
109 |
f"\nPlease create a real-world interview question based on this information."
|
110 |
)
|
111 |
|
112 |
-
# Generate response using GPT-4
|
113 |
-
response = generate_response([{"role": "user", "content": detailed_prompt}])
|
114 |
-
|
115 |
-
# Store generated question
|
116 |
st.session_state.generated_question = response
|
117 |
-
|
118 |
-
# Add the generated question to the conversation history as an assistant message (but omit the prompt)
|
119 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
120 |
|
121 |
-
# Enable follow-up mode
|
122 |
st.session_state.follow_up_mode = True
|
123 |
|
124 |
-
# Display
|
125 |
for message in st.session_state.messages:
|
126 |
with st.chat_message(message["role"]):
|
127 |
st.markdown(message["content"])
|
128 |
|
129 |
-
# Chatbox for subsequent conversations with assistant (follow-up mode)
|
130 |
if st.session_state.follow_up_mode:
|
131 |
if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"):
|
132 |
-
# Display user message in chat message container and add to session history
|
133 |
with st.chat_message("user"):
|
134 |
st.markdown(user_input)
|
135 |
|
136 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
137 |
|
138 |
-
# Generate
|
139 |
-
|
140 |
-
|
141 |
-
[{"role": "user", "content": technical_interviewer_prompt}] + st.session_state.messages
|
142 |
)
|
143 |
-
|
144 |
with st.chat_message("assistant"):
|
145 |
-
st.markdown(
|
146 |
|
147 |
-
st.session_state.messages.append({"role": "assistant", "content":
|
148 |
|
149 |
-
|
150 |
-
## About
|
151 |
-
This is a Real-World Interview Question Generator powered by AI.
|
152 |
-
Enter a company name, topic, and level of difficulty, and it will transform a relevant question into a real-world interview scenario!
|
153 |
-
Continue chatting with the AI interviewer in the chatbox.
|
154 |
-
""")
|
155 |
-
|
156 |
-
# Sidebar content to display persistent generated question (left sidebar)
|
157 |
st.sidebar.markdown("## Generated Question")
|
158 |
if st.session_state.generated_question:
|
159 |
st.sidebar.markdown(st.session_state.generated_question)
|
160 |
else:
|
161 |
st.sidebar.markdown("_No question generated yet._")
|
162 |
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
with st.expander("Debug Logs (Toggle On/Off)", expanded=False):
|
165 |
if len(st.session_state.debug_logs) > 0:
|
166 |
-
for log_entry in reversed(st.session_state.debug_logs):
|
167 |
st.write(log_entry)
|
168 |
|
169 |
st.sidebar.markdown("---")
|
@@ -172,13 +148,12 @@ code_input = st.sidebar.text_area("Write your Python code here:")
|
|
172 |
if st.sidebar.button("Run Code"):
|
173 |
try:
|
174 |
exec_globals = {}
|
175 |
-
exec(code_input, exec_globals)
|
176 |
output_key = [k for k in exec_globals.keys() if k != "__builtins__"]
|
177 |
if output_key:
|
178 |
output_value = exec_globals[output_key[0]]
|
179 |
st.sidebar.success(f"Output: {output_value}")
|
180 |
else:
|
181 |
st.sidebar.success("Code executed successfully!")
|
182 |
-
|
183 |
except Exception as e:
|
184 |
-
st.sidebar.error(f"Error: {e}")
|
|
|
28 |
with open("technical_interviewer_prompt.txt", "r") as file:
|
29 |
technical_interviewer_prompt = file.read()
|
30 |
|
|
|
31 |
with open("question_generation_prompt.txt", "r") as file:
|
32 |
question_generation_prompt = file.read()
|
33 |
|
|
|
38 |
st.session_state.messages = []
|
39 |
|
40 |
if "follow_up_mode" not in st.session_state:
|
41 |
+
st.session_state.follow_up_mode = False
|
42 |
|
43 |
if "generated_question" not in st.session_state:
|
44 |
+
st.session_state.generated_question = None
|
45 |
|
46 |
if "debug_logs" not in st.session_state:
|
47 |
+
st.session_state.debug_logs = []
|
48 |
|
49 |
# Function to find the top 1 most similar question based on user input
|
50 |
def find_top_question(query):
|
|
|
51 |
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
|
52 |
+
query_embedding = query_embedding.reshape(1, -1)
|
53 |
+
similarities = cosine_similarity(query_embedding, embeddings).flatten()
|
54 |
+
top_index = similarities.argsort()[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
top_result = metadata.iloc[top_index].copy()
|
56 |
top_result['similarity_score'] = similarities[top_index]
|
|
|
57 |
return top_result
|
58 |
|
59 |
+
# Function to generate response using OpenAI API
|
60 |
def generate_response(messages):
|
|
|
|
|
|
|
61 |
response = client.chat.completions.create(
|
62 |
model="o1-mini",
|
63 |
messages=messages,
|
64 |
)
|
|
|
65 |
return response.choices[0].message.content
|
66 |
|
67 |
# User input form for generating a new question
|
68 |
with st.form(key="input_form"):
|
69 |
+
company = st.text_input("Company", value="Google")
|
70 |
+
difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1)
|
71 |
+
topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking")
|
|
|
72 |
generate_button = st.form_submit_button(label="Generate")
|
73 |
|
74 |
if generate_button:
|
75 |
+
# Clear session state and reset follow-up mode
|
76 |
st.session_state.messages = []
|
77 |
st.session_state.follow_up_mode = False
|
78 |
|
|
|
|
|
79 |
# Create a query from user inputs and find the most relevant question
|
80 |
query = f"{company} {difficulty} {topic}"
|
81 |
top_question = find_top_question(query)
|
|
|
91 |
f"\nPlease create a real-world interview question based on this information."
|
92 |
)
|
93 |
|
94 |
+
# Generate response using GPT-4
|
95 |
+
response = generate_response([{"role": "user", "content": detailed_prompt}])
|
96 |
+
|
97 |
+
# Store the generated question for display but do not add the prompt to history
|
98 |
st.session_state.generated_question = response
|
|
|
|
|
99 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
100 |
|
101 |
+
# Enable follow-up mode
|
102 |
st.session_state.follow_up_mode = True
|
103 |
|
104 |
+
# Display the generated question and follow-up chat
|
105 |
for message in st.session_state.messages:
|
106 |
with st.chat_message(message["role"]):
|
107 |
st.markdown(message["content"])
|
108 |
|
|
|
109 |
if st.session_state.follow_up_mode:
|
110 |
if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"):
|
|
|
111 |
with st.chat_message("user"):
|
112 |
st.markdown(user_input)
|
113 |
|
114 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
115 |
|
116 |
+
# Generate follow-up response using the interviewer prompt but exclude it from history
|
117 |
+
follow_up_response = generate_response(
|
118 |
+
[{"role": "user", "content": user_input}]
|
|
|
119 |
)
|
120 |
+
|
121 |
with st.chat_message("assistant"):
|
122 |
+
st.markdown(follow_up_response)
|
123 |
|
124 |
+
st.session_state.messages.append({"role": "assistant", "content": follow_up_response})
|
125 |
|
126 |
+
# Sidebar content to display the generated question
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
st.sidebar.markdown("## Generated Question")
|
128 |
if st.session_state.generated_question:
|
129 |
st.sidebar.markdown(st.session_state.generated_question)
|
130 |
else:
|
131 |
st.sidebar.markdown("_No question generated yet._")
|
132 |
|
133 |
+
st.sidebar.markdown("""
|
134 |
+
## About
|
135 |
+
This is a Real-World Interview Question Generator powered by AI.
|
136 |
+
Enter a company name, topic, and level of difficulty, and it will transform a relevant question into a real-world interview scenario.
|
137 |
+
""")
|
138 |
+
|
139 |
+
# Debug logs and code interpreter section
|
140 |
with st.expander("Debug Logs (Toggle On/Off)", expanded=False):
|
141 |
if len(st.session_state.debug_logs) > 0:
|
142 |
+
for log_entry in reversed(st.session_state.debug_logs):
|
143 |
st.write(log_entry)
|
144 |
|
145 |
st.sidebar.markdown("---")
|
|
|
148 |
if st.sidebar.button("Run Code"):
|
149 |
try:
|
150 |
exec_globals = {}
|
151 |
+
exec(code_input, exec_globals)
|
152 |
output_key = [k for k in exec_globals.keys() if k != "__builtins__"]
|
153 |
if output_key:
|
154 |
output_value = exec_globals[output_key[0]]
|
155 |
st.sidebar.success(f"Output: {output_value}")
|
156 |
else:
|
157 |
st.sidebar.success("Code executed successfully!")
|
|
|
158 |
except Exception as e:
|
159 |
+
st.sidebar.error(f"Error: {e}")
|