rishabhpr commited on
Commit
9d504d6
·
verified ·
1 Parent(s): f6ba9ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -6
app.py CHANGED
@@ -1,16 +1,35 @@
1
  import streamlit as st
2
  from openai import OpenAI
3
  import os
 
 
 
 
 
4
 
5
  # Set up OpenAI client
6
  client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
7
 
8
- st.title("LeetCode to Real-World Interview Question Generator")
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  # Load the system prompt from the file
11
  with open("prompt.txt", "r") as file:
12
  system_prompt = file.read()
13
 
 
 
14
  # Initialize chat history
15
  if "messages" not in st.session_state:
16
  st.session_state.messages = [{"role": "assistant", "content": system_prompt}]
@@ -20,8 +39,30 @@ for message in st.session_state.messages[1:]: # Skip the system message
20
  with st.chat_message(message["role"]):
21
  st.markdown(message["content"])
22
 
23
- # Function to generate response using OpenAI API
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  def generate_response(prompt):
 
 
 
25
  response = client.chat.completions.create(
26
  model="gpt-4o",
27
  messages=st.session_state.messages + [{"role": "system", "content": prompt}]
@@ -29,23 +70,39 @@ def generate_response(prompt):
29
  return response.choices[0].message.content
30
 
31
  # React to user input
32
- if prompt := st.chat_input("Enter a LeetCode question to transform:"):
33
  # Display user message in chat message container
34
  st.chat_message("user").markdown(prompt)
35
  # Add user message to chat history
36
  st.session_state.messages.append({"role": "user", "content": prompt})
37
 
38
- # Generate response
39
- response = generate_response(prompt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  # Display assistant response in chat message container
42
  with st.chat_message("assistant"):
43
  st.markdown(response)
 
44
  # Add assistant response to chat history
45
  st.session_state.messages.append({"role": "assistant", "content": response})
46
 
47
  st.sidebar.markdown("""
48
  ## About
49
  This is a LeetCode to Real-World Interview Question Generator powered by OpenAI's GPT-4.
50
- Enter a LeetCode question to transform it into a real-world interview scenario!
51
  """)
 
1
  import streamlit as st
2
  from openai import OpenAI
3
  import os
4
+ import pandas as pd
5
+ import numpy as np
6
+ from sentence_transformers import SentenceTransformer
7
+ from sklearn.metrics.pairwise_distances_reduction import cosine_similarity_reduction
8
+ import torch
9
 
10
  # Set up OpenAI client
11
  client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
12
 
13
+ # Check if GPU is available
14
+ device = "cuda" if torch.cuda.is_available() else "cpu"
15
+ print(f"Using device: {device}")
16
+
17
+ # Load metadata and embeddings (ensure these files are in your working directory or update paths)
18
+ metadata_path = '/kaggle/working/leetcode_metadata.csv' # Update this path if needed
19
+ embeddings_path = '/kaggle/working/leetcode_embeddings2.npy' # Update this path if needed
20
+
21
+ metadata = pd.read_csv(metadata_path)
22
+ embeddings = np.load(embeddings_path)
23
+
24
+ # Load the SentenceTransformer model
25
+ model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
26
 
27
  # Load the system prompt from the file
28
  with open("prompt.txt", "r") as file:
29
  system_prompt = file.read()
30
 
31
+ st.title("LeetCode to Real-World Interview Question Generator")
32
+
33
  # Initialize chat history
34
  if "messages" not in st.session_state:
35
  st.session_state.messages = [{"role": "assistant", "content": system_prompt}]
 
39
  with st.chat_message(message["role"]):
40
  st.markdown(message["content"])
41
 
42
+ # Function to find the top 1 most similar question based on user input
43
+ def find_top_question(query):
44
+ # Generate embedding for the query
45
+ query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
46
+
47
+ # Compute cosine similarity between query embedding and dataset embeddings using scikit-learn's pairwise_distances_reduction
48
+ similarities = cosine_similarity_reduction(
49
+ X=query_embedding.reshape(1, -1), Y=embeddings, reduce_func="argmax"
50
+ )
51
+
52
+ # Get the index of the most similar result (top 1)
53
+ top_index = similarities.indices[0] # Index of highest similarity
54
+
55
+ # Retrieve metadata for the top result
56
+ top_result = metadata.iloc[top_index].copy()
57
+ top_result['similarity_score'] = similarities.distances[0]
58
+
59
+ return top_result
60
+
61
+ # Function to generate response using OpenAI API with debugging logs
62
  def generate_response(prompt):
63
+ st.write("### Debugging Log: Data Sent to GPT")
64
+ st.write(prompt) # Log the prompt being sent to GPT for debugging
65
+
66
  response = client.chat.completions.create(
67
  model="gpt-4o",
68
  messages=st.session_state.messages + [{"role": "system", "content": prompt}]
 
70
  return response.choices[0].message.content
71
 
72
  # React to user input
73
+ if prompt := st.chat_input("Enter a LeetCode-related query (e.g., 'google backtracking'):"):
74
  # Display user message in chat message container
75
  st.chat_message("user").markdown(prompt)
76
  # Add user message to chat history
77
  st.session_state.messages.append({"role": "user", "content": prompt})
78
 
79
+ # Find the top question based on user input
80
+ top_question = find_top_question(prompt)
81
+
82
+ # Prepare a detailed prompt for GPT using the top question's details
83
+ detailed_prompt = (
84
+ f"Transform this LeetCode question into a real-world interview scenario:\n\n"
85
+ f"**Company**: {top_question['company']}\n"
86
+ f"**Question ID**: {top_question['questionId']}\n"
87
+ f"**Question Name**: {top_question['questionName']}\n"
88
+ f"**Difficulty Level**: {top_question['difficulty level']}\n"
89
+ f"**Tags**: {top_question['Tags']}\n"
90
+ f"**Content**: {top_question['Content']}\n"
91
+ f"\nPlease create a real-world interview question based on this information."
92
+ )
93
+
94
+ # Generate response using GPT-4 with detailed prompt and debugging logs
95
+ response = generate_response(detailed_prompt)
96
 
97
  # Display assistant response in chat message container
98
  with st.chat_message("assistant"):
99
  st.markdown(response)
100
+
101
  # Add assistant response to chat history
102
  st.session_state.messages.append({"role": "assistant", "content": response})
103
 
104
  st.sidebar.markdown("""
105
  ## About
106
  This is a LeetCode to Real-World Interview Question Generator powered by OpenAI's GPT-4.
107
+ Enter a LeetCode-related query, and it will transform a relevant question into a real-world interview scenario!
108
  """)