Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import numpy as np
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
import torch
|
9 |
-
import requests
|
10 |
|
11 |
# Set up OpenAI client
|
12 |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
@@ -16,8 +15,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
16 |
print(f"Using device: {device}")
|
17 |
|
18 |
# Load metadata and embeddings (ensure these files are in your working directory or update paths)
|
19 |
-
metadata_path = 'question_metadata.csv'
|
20 |
-
embeddings_path = 'question_dataset_embeddings.npy'
|
21 |
|
22 |
metadata = pd.read_csv(metadata_path)
|
23 |
embeddings = np.load(embeddings_path)
|
@@ -38,94 +37,65 @@ st.title("Real-World Programming Question Mock Interview")
|
|
38 |
if "messages" not in st.session_state:
|
39 |
st.session_state.messages = []
|
40 |
|
|
|
|
|
|
|
41 |
if "generated_question" not in st.session_state:
|
42 |
-
st.session_state.generated_question = None
|
43 |
|
44 |
-
if "
|
45 |
-
st.session_state.
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
if st.session_state.generated_question:
|
53 |
-
st.sidebar.markdown(st.session_state.generated_question)
|
54 |
-
else:
|
55 |
-
st.sidebar.markdown("_No question generated yet._")
|
56 |
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
placeholder="Enter your code...",
|
64 |
-
)
|
65 |
|
66 |
-
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
else:
|
82 |
-
try:
|
83 |
-
evaluation_prompt = (
|
84 |
-
f"Question: {st.session_state.generated_question}\n\n"
|
85 |
-
f"Code:\n{code_input}\n\n"
|
86 |
-
f"Evaluate this code's correctness, efficiency, and style."
|
87 |
-
)
|
88 |
-
response = client.chat.completions.create(
|
89 |
-
model="gpt-4",
|
90 |
-
messages=[{"role": "user", "content": evaluation_prompt}],
|
91 |
-
)
|
92 |
-
evaluation_response = response.choices[0].message.content
|
93 |
-
st.session_state.evaluation_output = evaluation_response
|
94 |
-
|
95 |
-
# Add evaluation output to follow-up conversation
|
96 |
-
st.session_state.messages.append({"role": "assistant", "content": evaluation_response})
|
97 |
-
except Exception as e:
|
98 |
-
st.sidebar.error(f"Error during evaluation: {str(e)}")
|
99 |
-
|
100 |
-
# Display outputs below the main app content
|
101 |
-
st.subheader("Code Output")
|
102 |
-
st.text(st.session_state.code_output)
|
103 |
-
|
104 |
-
st.subheader("Evaluation Output")
|
105 |
-
st.text(st.session_state.evaluation_output)
|
106 |
-
|
107 |
-
# Main app logic for generating questions and follow-up conversation remains unchanged.
|
108 |
with st.form(key="input_form"):
|
109 |
-
company = st.text_input("Company", value="Google")
|
110 |
-
difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1)
|
111 |
-
topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking")
|
112 |
|
113 |
generate_button = st.form_submit_button(label="Generate")
|
114 |
|
115 |
if generate_button:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
|
120 |
-
query_embedding = query_embedding.reshape(1, -1)
|
121 |
-
similarities = cosine_similarity(query_embedding, embeddings).flatten()
|
122 |
-
top_index = similarities.argsort()[-1]
|
123 |
-
top_result = metadata.iloc[top_index].copy()
|
124 |
-
top_result['similarity_score'] = similarities[top_index]
|
125 |
-
return top_result
|
126 |
|
|
|
|
|
127 |
top_question = find_top_question(query)
|
128 |
|
|
|
129 |
detailed_prompt = (
|
130 |
f"Transform this LeetCode question into a real-world interview scenario:\n\n"
|
131 |
f"**Company**: {top_question['company']}\n"
|
@@ -136,29 +106,76 @@ if generate_button:
|
|
136 |
f"\nPlease create a real-world interview question based on this information."
|
137 |
)
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
145 |
|
|
|
|
|
|
|
|
|
146 |
for message in st.session_state.messages:
|
147 |
with st.chat_message(message["role"]):
|
148 |
st.markdown(message["content"])
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
import torch
|
|
|
9 |
|
10 |
# Set up OpenAI client
|
11 |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
|
|
15 |
print(f"Using device: {device}")
|
16 |
|
17 |
# Load metadata and embeddings (ensure these files are in your working directory or update paths)
|
18 |
+
metadata_path = 'question_metadata.csv' # Update this path if needed
|
19 |
+
embeddings_path = 'question_dataset_embeddings.npy' # Update this path if needed
|
20 |
|
21 |
metadata = pd.read_csv(metadata_path)
|
22 |
embeddings = np.load(embeddings_path)
|
|
|
37 |
if "messages" not in st.session_state:
|
38 |
st.session_state.messages = []
|
39 |
|
40 |
+
if "follow_up_mode" not in st.session_state:
|
41 |
+
st.session_state.follow_up_mode = False # Tracks whether we're in follow-up mode
|
42 |
+
|
43 |
if "generated_question" not in st.session_state:
|
44 |
+
st.session_state.generated_question = None # Stores the generated question for persistence
|
45 |
|
46 |
+
if "debug_logs" not in st.session_state:
|
47 |
+
st.session_state.debug_logs = [] # Stores debug logs for toggling
|
48 |
|
49 |
+
# Function to find the top 1 most similar question based on user input
|
50 |
+
def find_top_question(query):
|
51 |
+
# Generate embedding for the query
|
52 |
+
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
|
53 |
+
|
54 |
+
# Reshape query_embedding to ensure it is a 2D array
|
55 |
+
query_embedding = query_embedding.reshape(1, -1) # Reshape to (1, n_features)
|
56 |
|
57 |
+
# Compute cosine similarity between query embedding and dataset embeddings
|
58 |
+
similarities = cosine_similarity(query_embedding, embeddings).flatten() # Flatten to get a 1D array of similarities
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# Get the index of the most similar result (top 1)
|
61 |
+
top_index = similarities.argsort()[-1] # Index of highest similarity
|
62 |
|
63 |
+
# Retrieve metadata for the top result
|
64 |
+
top_result = metadata.iloc[top_index].copy()
|
65 |
+
top_result['similarity_score'] = similarities[top_index]
|
|
|
|
|
66 |
|
67 |
+
return top_result
|
68 |
|
69 |
+
# Function to generate response using OpenAI API with debugging logs
|
70 |
+
def generate_response(messages):
|
71 |
+
debug_log_entry = {"messages": messages}
|
72 |
+
st.session_state.debug_logs.append(debug_log_entry) # Store debug log
|
73 |
+
|
74 |
+
response = client.chat.completions.create(
|
75 |
+
model="o1-mini",
|
76 |
+
messages=messages,
|
77 |
+
)
|
78 |
+
|
79 |
+
return response.choices[0].message.content
|
80 |
+
|
81 |
+
# User input form for generating a new question
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
with st.form(key="input_form"):
|
83 |
+
company = st.text_input("Company", value="Google") # Default value: Google
|
84 |
+
difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1) # Default: Medium
|
85 |
+
topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking") # Default: Backtracking
|
86 |
|
87 |
generate_button = st.form_submit_button(label="Generate")
|
88 |
|
89 |
if generate_button:
|
90 |
+
# Clear session state and start fresh with follow-up mode disabled
|
91 |
+
st.session_state.messages = []
|
92 |
+
st.session_state.follow_up_mode = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Create a query from user inputs and find the most relevant question
|
95 |
+
query = f"{company} {difficulty} {topic}"
|
96 |
top_question = find_top_question(query)
|
97 |
|
98 |
+
# Prepare a detailed prompt for GPT using the top question's details
|
99 |
detailed_prompt = (
|
100 |
f"Transform this LeetCode question into a real-world interview scenario:\n\n"
|
101 |
f"**Company**: {top_question['company']}\n"
|
|
|
106 |
f"\nPlease create a real-world interview question based on this information."
|
107 |
)
|
108 |
|
109 |
+
# Generate response using GPT-4 with detailed prompt and debugging logs
|
110 |
+
response = generate_response([{"role": "assistant", "content": question_generation_prompt}, {"role": "user", "content": detailed_prompt}])
|
111 |
+
|
112 |
+
# Store generated question in session state for persistence in sidebar and follow-up conversation state
|
113 |
+
st.session_state.generated_question = response
|
114 |
+
|
115 |
+
# Add the generated question to the conversation history as an assistant message (to make it part of follow-up conversations)
|
116 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
117 |
|
118 |
+
# Enable follow-up mode after generating the initial question
|
119 |
+
st.session_state.follow_up_mode = True
|
120 |
+
|
121 |
+
# Display chat messages from history on app rerun (for subsequent conversation)
|
122 |
for message in st.session_state.messages:
|
123 |
with st.chat_message(message["role"]):
|
124 |
st.markdown(message["content"])
|
125 |
|
126 |
+
# Chatbox for subsequent conversations with assistant (follow-up mode)
|
127 |
+
if st.session_state.follow_up_mode:
|
128 |
+
if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"):
|
129 |
+
# Display user message in chat message container and add to session history
|
130 |
+
with st.chat_message("user"):
|
131 |
+
st.markdown(user_input)
|
132 |
+
|
133 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
134 |
+
|
135 |
+
# Generate assistant's response based on follow-up input using technical_interviewer_prompt as system prompt,
|
136 |
+
# including the generated question in context.
|
137 |
+
assistant_response = generate_response(
|
138 |
+
[{"role": "assistant", "content": technical_interviewer_prompt}] + st.session_state.messages
|
139 |
+
)
|
140 |
+
|
141 |
+
with st.chat_message("assistant"):
|
142 |
+
st.markdown(assistant_response)
|
143 |
+
|
144 |
+
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
|
145 |
+
|
146 |
+
# Sidebar content to display persistent generated question (left sidebar)
|
147 |
+
st.sidebar.markdown("## Generated Question")
|
148 |
+
if st.session_state.generated_question:
|
149 |
+
st.sidebar.markdown(st.session_state.generated_question)
|
150 |
+
else:
|
151 |
+
st.sidebar.markdown("_No question generated yet._")
|
152 |
+
|
153 |
+
st.sidebar.markdown("""
|
154 |
+
## About
|
155 |
+
This is a Real-World Interview Question Generator powered by OpenAI's API.
|
156 |
+
Enter a company name, topic, and level of difficulty, and it will transform a relevant question into a real-world interview scenario!
|
157 |
+
Continue chatting with the assistant in the chatbox below.
|
158 |
+
""")
|
159 |
+
|
160 |
+
# Right sidebar toggleable debug logs and code interpreter section
|
161 |
+
with st.expander("Debug Logs (Toggle On/Off)", expanded=False):
|
162 |
+
if len(st.session_state.debug_logs) > 0:
|
163 |
+
for log_entry in reversed(st.session_state.debug_logs): # Show most recent logs first
|
164 |
+
st.write(log_entry)
|
165 |
+
|
166 |
+
st.sidebar.markdown("---")
|
167 |
+
st.sidebar.markdown("## Python Code Interpreter")
|
168 |
+
code_input = st.sidebar.text_area("Write your Python code here:")
|
169 |
+
if st.sidebar.button("Run Code"):
|
170 |
+
try:
|
171 |
+
exec_globals = {}
|
172 |
+
exec(code_input, exec_globals) # Execute user-provided code safely within its own scope.
|
173 |
+
output_key = [k for k in exec_globals.keys() if k != "__builtins__"]
|
174 |
+
if output_key:
|
175 |
+
output_value = exec_globals[output_key[0]]
|
176 |
+
st.sidebar.success(f"Output: {output_value}")
|
177 |
+
else:
|
178 |
+
st.sidebar.success("Code executed successfully!")
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
st.sidebar.error(f"Error: {e}")
|