rishabhpr commited on
Commit
f54e1ed
·
verified ·
1 Parent(s): 32cb41d

add speech

Browse files
Files changed (1) hide show
  1. app.py +85 -72
app.py CHANGED
@@ -6,10 +6,14 @@ import numpy as np
6
  from sentence_transformers import SentenceTransformer
7
  from sklearn.metrics.pairwise import cosine_similarity
8
  import torch
 
9
 
10
  # Set up OpenAI client
11
  client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
12
 
 
 
 
13
  # Check if GPU is available
14
  device = "cuda" if torch.cuda.is_available() else "cpu"
15
  print(f"Using device: {device}")
@@ -46,24 +50,17 @@ if "generated_question" not in st.session_state:
46
  if "debug_logs" not in st.session_state:
47
  st.session_state.debug_logs = [] # Stores debug logs for toggling
48
 
 
 
 
49
  # Function to find the top 1 most similar question based on user input
50
  def find_top_question(query):
51
- # Generate embedding for the query
52
  query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
53
-
54
- # Reshape query_embedding to ensure it is a 2D array
55
  query_embedding = query_embedding.reshape(1, -1) # Reshape to (1, n_features)
56
-
57
- # Compute cosine similarity between query embedding and dataset embeddings
58
- similarities = cosine_similarity(query_embedding, embeddings).flatten() # Flatten to get a 1D array of similarities
59
-
60
- # Get the index of the most similar result (top 1)
61
- top_index = similarities.argsort()[-1] # Index of highest similarity
62
-
63
- # Retrieve metadata for the top result
64
  top_result = metadata.iloc[top_index].copy()
65
  top_result['similarity_score'] = similarities[top_index]
66
-
67
  return top_result
68
 
69
  # Function to generate response using OpenAI API with debugging logs
@@ -78,24 +75,48 @@ def generate_response(messages):
78
 
79
  return response.choices[0].message.content
80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  # User input form for generating a new question
82
  with st.form(key="input_form"):
83
- company = st.text_input("Company", value="Google") # Default value: Google
84
- difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1) # Default: Medium
85
- topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking") # Default: Backtracking
86
 
87
  generate_button = st.form_submit_button(label="Generate")
88
 
89
  if generate_button:
90
- # Clear session state and start fresh with follow-up mode disabled
91
  st.session_state.messages = []
92
  st.session_state.follow_up_mode = False
93
 
94
- # Create a query from user inputs and find the most relevant question
95
  query = f"{company} {difficulty} {topic}"
96
  top_question = find_top_question(query)
97
 
98
- # Prepare a detailed prompt for GPT using the top question's details
99
  detailed_prompt = (
100
  f"Transform this LeetCode question into a real-world interview scenario:\n\n"
101
  f"**Company**: {top_question['company']}\n"
@@ -106,76 +127,68 @@ if generate_button:
106
  f"\nPlease create a real-world interview question based on this information."
107
  )
108
 
109
- # Generate response using GPT-4 with detailed prompt and debugging logs
110
- response = generate_response([{"role": "assistant", "content": question_generation_prompt}, {"role": "user", "content": detailed_prompt}])
111
-
112
- # Store generated question in session state for persistence in sidebar and follow-up conversation state
113
- st.session_state.generated_question = response
114
-
115
- # Add the generated question to the conversation history as an assistant message (to make it part of follow-up conversations)
116
- st.session_state.messages.append({"role": "assistant", "content": response})
117
 
118
- # Enable follow-up mode after generating the initial question
 
119
  st.session_state.follow_up_mode = True
120
 
121
- # Display chat messages from history on app rerun (for subsequent conversation)
122
  for message in st.session_state.messages:
123
  with st.chat_message(message["role"]):
124
  st.markdown(message["content"])
125
 
126
- # Chatbox for subsequent conversations with assistant (follow-up mode)
127
  if st.session_state.follow_up_mode:
128
  if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"):
129
- # Display user message in chat message container and add to session history
130
  with st.chat_message("user"):
131
  st.markdown(user_input)
132
 
133
  st.session_state.messages.append({"role": "user", "content": user_input})
134
 
135
- # Generate assistant's response based on follow-up input using technical_interviewer_prompt as system prompt,
136
- # including the generated question in context.
137
- assistant_response = generate_response(
138
  [{"role": "assistant", "content": technical_interviewer_prompt}] + st.session_state.messages
139
  )
140
 
 
 
141
  with st.chat_message("assistant"):
142
- st.markdown(assistant_response)
 
 
 
143
 
144
- st.session_state.messages.append({"role": "assistant", "content": assistant_response})
145
-
146
- # Sidebar content to display persistent generated question (left sidebar)
147
- st.sidebar.markdown("## Generated Question")
148
- if st.session_state.generated_question:
149
- st.sidebar.markdown(st.session_state.generated_question)
150
- else:
151
- st.sidebar.markdown("_No question generated yet._")
152
-
153
- st.sidebar.markdown("""
154
- ## About
155
- This is a Real-World Interview Question Generator powered by OpenAI's API.
156
- Enter a company name, topic, and level of difficulty, and it will transform a relevant question into a real-world interview scenario!
157
- Continue chatting with the assistant in the chatbox below.
158
- """)
159
-
160
- # Right sidebar toggleable debug logs and code interpreter section
161
- with st.expander("Debug Logs (Toggle On/Off)", expanded=False):
162
- if len(st.session_state.debug_logs) > 0:
163
- for log_entry in reversed(st.session_state.debug_logs): # Show most recent logs first
164
- st.write(log_entry)
165
-
166
- st.sidebar.markdown("---")
167
- st.sidebar.markdown("## Python Code Interpreter")
168
- code_input = st.sidebar.text_area("Write your Python code here:")
169
- if st.sidebar.button("Run Code"):
170
- try:
171
- exec_globals = {}
172
- exec(code_input, exec_globals) # Execute user-provided code safely within its own scope.
173
- output_key = [k for k in exec_globals.keys() if k != "__builtins__"]
174
- if output_key:
175
- output_value = exec_globals[output_key[0]]
176
- st.sidebar.success(f"Output: {output_value}")
177
- else:
178
- st.sidebar.success("Code executed successfully!")
179
-
180
- except Exception as e:
181
- st.sidebar.error(f"Error: {e}")
 
6
  from sentence_transformers import SentenceTransformer
7
  from sklearn.metrics.pairwise import cosine_similarity
8
  import torch
9
+ import requests
10
 
11
  # Set up OpenAI client
12
  client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
13
 
14
+ # Set up ElevenLabs API key
15
+ ELEVENLABS_API_KEY = "your_api_key"
16
+
17
  # Check if GPU is available
18
  device = "cuda" if torch.cuda.is_available() else "cpu"
19
  print(f"Using device: {device}")
 
50
  if "debug_logs" not in st.session_state:
51
  st.session_state.debug_logs = [] # Stores debug logs for toggling
52
 
53
+ if "code_output" not in st.session_state:
54
+ st.session_state.code_output = None # Stores the output of executed Python code
55
+
56
  # Function to find the top 1 most similar question based on user input
57
  def find_top_question(query):
 
58
  query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
 
 
59
  query_embedding = query_embedding.reshape(1, -1) # Reshape to (1, n_features)
60
+ similarities = cosine_similarity(query_embedding, embeddings).flatten()
61
+ top_index = similarities.argsort()[-1]
 
 
 
 
 
 
62
  top_result = metadata.iloc[top_index].copy()
63
  top_result['similarity_score'] = similarities[top_index]
 
64
  return top_result
65
 
66
  # Function to generate response using OpenAI API with debugging logs
 
75
 
76
  return response.choices[0].message.content
77
 
78
+ # Function to generate audio using ElevenLabs API
79
+ def generate_audio(text):
80
+ url = "https://api.elevenlabs.io/v1/text-to-speech"
81
+ headers = {
82
+ "xi-api-key": ELEVENLABS_API_KEY,
83
+ "content-type": "application/json"
84
+ }
85
+ payload = {
86
+ "text": text,
87
+ "voice_id": "21m00tcm4tlvdq8ikwam", # Default voice ID; replace with desired voice ID.
88
+ "voice_settings": {
89
+ "similarity_boost": 0.85,
90
+ "stability": 0.5
91
+ }
92
+ }
93
+
94
+ response = requests.post(url, headers=headers, json=payload)
95
+
96
+ if response.status_code == 200:
97
+ audio_file_path = f"assistant_response.mp3"
98
+ with open(audio_file_path, "wb") as audio_file:
99
+ audio_file.write(response.content)
100
+ return audio_file_path
101
+ else:
102
+ st.error(f"Error generating audio: {response.status_code} - {response.text}")
103
+ return None
104
+
105
  # User input form for generating a new question
106
  with st.form(key="input_form"):
107
+ company = st.text_input("Company", value="Google")
108
+ difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1)
109
+ topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking")
110
 
111
  generate_button = st.form_submit_button(label="Generate")
112
 
113
  if generate_button:
 
114
  st.session_state.messages = []
115
  st.session_state.follow_up_mode = False
116
 
 
117
  query = f"{company} {difficulty} {topic}"
118
  top_question = find_top_question(query)
119
 
 
120
  detailed_prompt = (
121
  f"Transform this LeetCode question into a real-world interview scenario:\n\n"
122
  f"**Company**: {top_question['company']}\n"
 
127
  f"\nPlease create a real-world interview question based on this information."
128
  )
129
 
130
+ response_text = generate_response([{"role": "assistant", "content": question_generation_prompt}, {"role": "user", "content": detailed_prompt}])
131
+
132
+ st.session_state.generated_question = response_text
 
 
 
 
 
133
 
134
+ st.session_state.messages.append({"role": "assistant", "content": response_text})
135
+
136
  st.session_state.follow_up_mode = True
137
 
 
138
  for message in st.session_state.messages:
139
  with st.chat_message(message["role"]):
140
  st.markdown(message["content"])
141
 
 
142
  if st.session_state.follow_up_mode:
143
  if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"):
 
144
  with st.chat_message("user"):
145
  st.markdown(user_input)
146
 
147
  st.session_state.messages.append({"role": "user", "content": user_input})
148
 
149
+ assistant_response_text = generate_response(
 
 
150
  [{"role": "assistant", "content": technical_interviewer_prompt}] + st.session_state.messages
151
  )
152
 
153
+ assistant_audio_path = generate_audio(assistant_response_text)
154
+
155
  with st.chat_message("assistant"):
156
+ st.markdown(assistant_response_text)
157
+ if assistant_audio_path:
158
+ audio_bytes = open(assistant_audio_path, "rb").read()
159
+ st.audio(audio_bytes, format="audio/mp3")
160
 
161
+ st.session_state.messages.append({"role": "assistant", "content": assistant_response_text})
162
+
163
+ # Left Sidebar: Generated Question and Code Box
164
+ with st.sidebar:
165
+ # Top Half: Generated Question
166
+ st.markdown("## Generated Question")
167
+ if st.session_state.generated_question:
168
+ st.markdown(st.session_state.generated_question)
169
+ else:
170
+ st.markdown("_No question generated yet._")
171
+
172
+ # Divider between sections
173
+ st.markdown("---")
174
+
175
+ # Bottom Half: Python Code Box
176
+ st.markdown("## Python Code Interpreter")
177
+
178
+ code_input = st.text_area("Write your Python code here:")
179
+
180
+ col1, col2 = st.columns(2)
181
+
182
+ with col1:
183
+ if st.button("Run Code"):
184
+ try:
185
+ exec_globals = {}
186
+ exec(code_input, exec_globals) # Execute user-provided code safely within its own scope.
187
+ output_key_values = {k: v for k, v in exec_globals.items() if k != "__builtins__"}
188
+ if output_key_values:
189
+ output_strs = [f"{key}: {value}" for key, value in output_key_values.items()]
190
+ output_display_strs = "\n".join(output_strs)
191
+ output_display_strs += "\nCode executed successfully!"
192
+ print(output_display_strs)
193
+
194
+ except Exception as e: