import streamlit as st from openai import OpenAI import os import pandas as pd import numpy as np from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import torch import re # Set up OpenAI client client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) # Check if GPU is available device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") # Load metadata and embeddings (ensure these files are in your working directory or update paths) metadata_path = 'question_metadata.csv' # Update this path if needed embeddings_path = 'question_dataset_embeddings.npy' # Update this path if needed metadata = pd.read_csv(metadata_path) embeddings = np.load(embeddings_path) # Load the SentenceTransformer model model = SentenceTransformer("all-MiniLM-L6-v2").to(device) # Load prompts from files with open("technical_interviewer_prompt.txt", "r") as file: technical_interviewer_prompt = file.read() with open("question_generation_prompt.txt", "r") as file: question_generation_prompt = file.read() st.title("Mock Interview: Real-World Programming") # Initialize session state variables if "messages" not in st.session_state: st.session_state.messages = [] if "follow_up_mode" not in st.session_state: st.session_state.follow_up_mode = False # Tracks whether we're in follow-up mode if "generated_question" not in st.session_state: st.session_state.generated_question = None # Stores the generated question for persistence if "code_template" not in st.session_state: st.session_state.code_template = "" # Stores the code template if "sample_test_case" not in st.session_state: st.session_state.sample_test_case = "" # Stores the sample test case if "expected_output" not in st.session_state: st.session_state.expected_output = "" # Stores the expected output if "debug_logs" not in st.session_state: st.session_state.debug_logs = None # Stores debug logs for toggling # Function to find the top 1 most similar question based on user input def find_top_question(query): # Generate embedding for the query query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy() # Reshape query_embedding to ensure it is a 2D array query_embedding = query_embedding.reshape(1, -1) # Reshape to (1, n_features) # Compute cosine similarity between query embedding and dataset embeddings similarities = cosine_similarity(query_embedding, embeddings).flatten() # Flatten to get a 1D array of similarities # Get the index of the most similar result (top 1) top_index = similarities.argsort()[-1] # Index of highest similarity # Retrieve metadata for the top result top_result = metadata.iloc[top_index].copy() top_result['similarity_score'] = similarities[top_index] return top_result # Function to generate response using OpenAI API with debugging logs def generate_response(messages): # For debug logs, store only the follow-up conversation history st.session_state.debug_logs = st.session_state.messages # Update debug logs with current conversation response = client.chat.completions.create( model="o1-mini", messages=messages, ) return response.choices[0].message.content # Function to extract code template and sample test case from the generated question def extract_code_and_test_case(generated_question): code_template = "" sample_test_case = "" expected_output = "" # Extract code template code_match = re.search(r'```python(.*?)```', generated_question, re.DOTALL) if code_match: code_template = code_match.group(1).strip() else: # Default code template if none is found code_template = "# Write your code here\n" # Extract sample test case and expected output test_case_match = re.search(r'Sample Input:\s*(.*?)\n', generated_question, re.DOTALL) expected_output_match = re.search(r'Expected Output:\s*(.*?)\n', generated_question, re.DOTALL) if test_case_match and expected_output_match: sample_test_case = test_case_match.group(1).strip() expected_output = expected_output_match.group(1).strip() else: sample_test_case = "" expected_output = "" return code_template, sample_test_case, expected_output # Move the input form to the sidebar to make it always visible and more compact with st.sidebar.form(key="input_form"): st.markdown("## Generate a New Question") company = st.text_input("Company", value="Google") # Default value: Google difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1) # Default: Medium topic = st.text_input("Topic", value="Binary Search") # Default: Binary Search generate_button = st.form_submit_button(label="Generate") if generate_button: # Clear session state and start fresh with follow-up mode disabled st.session_state.messages = [] st.session_state.follow_up_mode = False # Create a query from user inputs and find the most relevant question query = f"{company} {difficulty} {topic}" top_question = find_top_question(query) # Prepare a detailed prompt for GPT using the top question's details detailed_prompt = ( f"Transform this LeetCode question into a real-world interview scenario.\n\n" f"**Company**: {top_question['company']}\n" f"**Question Name**: {top_question['questionName']}\n" f"**Difficulty Level**: {top_question['difficulty level']}\n" f"**Tags**: {top_question['Tags']}\n" f"**Content**: {top_question['Content']}\n" f"\nPlease create a real-world interview question based on this information. " f"Include the following sections:\n\n" f"- Problem Description\n" f"- Code Template (in a Python code block)\n" f"- Sample Input and Expected Output (clearly separated)\n" ) # Generate response using OpenAI API with detailed prompt and debugging logs response = generate_response([{"role": "user", "content": detailed_prompt}]) # Question generation prompt excluded here # Store generated question in session state for persistence in sidebar and follow-up conversation state st.session_state.generated_question = response # Extract code template and sample test case code_template, sample_test_case, expected_output = extract_code_and_test_case(response) st.session_state.code_template = code_template st.session_state.sample_test_case = sample_test_case st.session_state.expected_output = expected_output # Enable follow-up mode after generating the initial question st.session_state.follow_up_mode = True # Display chat messages from history on app rerun (for subsequent conversation) for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Chatbox for subsequent conversations with assistant (follow-up mode) if st.session_state.follow_up_mode: if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"): # Display user message in chat message container and add to session history with st.chat_message("user"): st.markdown(user_input) st.session_state.messages.append({"role": "user", "content": user_input}) # Prepare messages to send to the assistant # Include the technical interviewer prompt and generated question, but do not display them # Add an instruction for the assistant to reply as a real-world interviewer would assistant_instruction = ( "As a real-world interviewer, please reply to the candidate's follow-up questions " "specific to the generated interview question, to the point, and in a natural, human-sounding way." ) messages_to_send = [ {"role": "user", "content": technical_interviewer_prompt}, {"role": "assistant", "content": st.session_state.generated_question}, {"role": "user", "content": assistant_instruction} ] + st.session_state.messages assistant_response = generate_response(messages_to_send) with st.chat_message("assistant"): st.markdown(assistant_response) st.session_state.messages.append({"role": "assistant", "content": assistant_response}) st.sidebar.markdown("---") st.sidebar.markdown("## Generated Question") if st.session_state.generated_question: st.sidebar.markdown(st.session_state.generated_question) else: st.sidebar.markdown("_No question generated yet._") st.sidebar.markdown("---") st.sidebar.markdown("## Python Code Interpreter") # Pre-fill code interpreter with code template after question generation if st.session_state.code_template: code_input = st.sidebar.text_area("Write your Python code here:", value=st.session_state.code_template, height=300) else: code_input = st.sidebar.text_area("Write your Python code here:", height=300) if st.sidebar.button("Run Code"): try: # Prepare the code for execution exec_globals = {} # Create a function wrapper to execute the user's code exec(f"def user_solution():\n{code_input}", exec_globals) user_solution = exec_globals.get('user_solution', None) # Prepare sample test case execution if st.session_state.sample_test_case: # Assume the sample test case is in the format of arguments to the function test_case = st.session_state.sample_test_case # Evaluate the test case safely test_args = eval(test_case) if not isinstance(test_args, tuple): test_args = (test_args,) # Capture the output returned_output = user_solution(*test_args) else: returned_output = user_solution() # Display the expected output and returned output st.sidebar.markdown("### Sample Test Case Result:") st.sidebar.markdown(f"**Sample Input:** {st.session_state.sample_test_case}") st.sidebar.markdown(f"**Expected Output:** {st.session_state.expected_output}") st.sidebar.markdown(f"**Your Output:** {returned_output}") # Compare outputs if str(returned_output) == st.session_state.expected_output: st.sidebar.success("Your output matches the expected output!") else: st.sidebar.error("Your output does not match the expected output.") except Exception as e: st.sidebar.error(f"Error: {e}") # Right sidebar toggleable debug logs and code interpreter section with st.expander("Debug Logs (Toggle On/Off)", expanded=False): if st.session_state.debug_logs: st.write(st.session_state.debug_logs)