import streamlit as st from openai import OpenAI import os import pandas as pd import numpy as np from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import torch import requests # Set up OpenAI client client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) # Set up ElevenLabs API key ELEVENLABS_API_KEY = "your_api_key" # Check if GPU is available device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") # Load metadata and embeddings (ensure these files are in your working directory or update paths) metadata_path = 'question_metadata.csv' # Update this path if needed embeddings_path = 'question_dataset_embeddings.npy' # Update this path if needed metadata = pd.read_csv(metadata_path) embeddings = np.load(embeddings_path) # Load the SentenceTransformer model model = SentenceTransformer("all-MiniLM-L6-v2").to(device) # Load prompts from files with open("question_generation_prompt.txt", "r") as file: question_generation_prompt = file.read() with open("technical_interviewer_prompt.txt", "r") as file: technical_interviewer_prompt = file.read() st.title("Real-World Programming Question Mock Interview") # Initialize session state variables if "messages" not in st.session_state: st.session_state.messages = [] if "follow_up_mode" not in st.session_state: st.session_state.follow_up_mode = False # Tracks whether we're in follow-up mode if "generated_question" not in st.session_state: st.session_state.generated_question = None # Stores the generated question for persistence if "debug_logs" not in st.session_state: st.session_state.debug_logs = [] # Stores debug logs for toggling if "code_output" not in st.session_state: st.session_state.code_output = None # Stores the output of executed Python code # Function to find the top 1 most similar question based on user input def find_top_question(query): query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy() query_embedding = query_embedding.reshape(1, -1) # Reshape to (1, n_features) similarities = cosine_similarity(query_embedding, embeddings).flatten() top_index = similarities.argsort()[-1] top_result = metadata.iloc[top_index].copy() top_result['similarity_score'] = similarities[top_index] return top_result # Function to generate response using OpenAI API with debugging logs def generate_response(messages): debug_log_entry = {"messages": messages} st.session_state.debug_logs.append(debug_log_entry) # Store debug log response = client.chat.completions.create( model="o1-mini", messages=messages, ) return response.choices[0].message.content # Function to generate audio using ElevenLabs API def generate_audio(text): url = "https://api.elevenlabs.io/v1/text-to-speech" headers = { "xi-api-key": ELEVENLABS_API_KEY, "content-type": "application/json" } payload = { "text": text, "voice_id": "21m00tcm4tlvdq8ikwam", # Default voice ID; replace with desired voice ID. "voice_settings": { "similarity_boost": 0.85, "stability": 0.5 } } response = requests.post(url, headers=headers, json=payload) if response.status_code == 200: audio_file_path = f"assistant_response.mp3" with open(audio_file_path, "wb") as audio_file: audio_file.write(response.content) return audio_file_path else: st.error(f"Error generating audio: {response.status_code} - {response.text}") return None # User input form for generating a new question with st.form(key="input_form"): company = st.text_input("Company", value="Google") difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1) topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking") generate_button = st.form_submit_button(label="Generate") if generate_button: st.session_state.messages = [] st.session_state.follow_up_mode = False query = f"{company} {difficulty} {topic}" top_question = find_top_question(query) detailed_prompt = ( f"Transform this LeetCode question into a real-world interview scenario:\n\n" f"**Company**: {top_question['company']}\n" f"**Question Name**: {top_question['questionName']}\n" f"**Difficulty Level**: {top_question['difficulty level']}\n" f"**Tags**: {top_question['Tags']}\n" f"**Content**: {top_question['Content']}\n" f"\nPlease create a real-world interview question based on this information." ) response_text = generate_response([{"role": "assistant", "content": question_generation_prompt}, {"role": "user", "content": detailed_prompt}]) st.session_state.generated_question = response_text st.session_state.messages.append({"role": "assistant", "content": response_text}) st.session_state.follow_up_mode = True for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if st.session_state.follow_up_mode: if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"): with st.chat_message("user"): st.markdown(user_input) st.session_state.messages.append({"role": "user", "content": user_input}) assistant_response_text = generate_response( [{"role": "assistant", "content": technical_interviewer_prompt}] + st.session_state.messages ) assistant_audio_path = generate_audio(assistant_response_text) with st.chat_message("assistant"): st.markdown(assistant_response_text) if assistant_audio_path: audio_bytes = open(assistant_audio_path, "rb").read() st.audio(audio_bytes, format="audio/mp3") st.session_state.messages.append({"role": "assistant", "content": assistant_response_text}) # Left Sidebar: Generated Question and Code Box with st.sidebar: # Top Half: Generated Question st.markdown("## Generated Question") if st.session_state.generated_question: st.markdown(st.session_state.generated_question) else: st.markdown("_No question generated yet._") # Divider between sections st.markdown("---") # Bottom Half: Python Code Box st.markdown("## Python Code Interpreter") code_input = st.text_area("Write your Python code here:") col1, col2 = st.columns(2) with col1: if st.button("Run Code"): try: exec_globals = {} exec(code_input, exec_globals) # Execute user-provided code safely within its own scope. output_key_values = {k: v for k, v in exec_globals.items() if k != "__builtins__"} if output_key_values: output_strs = [f"{key}: {value}" for key, value in output_key_values.items()] output_display_strs = "\n".join(output_strs) output_display_strs += "\nCode executed successfully!" print(output_display_strs) except Exception as e: