rishabhv471
commited on
Commit
•
0599d82
1
Parent(s):
58ab6bf
test
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import asyncio
|
|
2 |
import string
|
3 |
from collections import Counter
|
4 |
from itertools import count, tee
|
5 |
-
|
6 |
import cv2
|
7 |
import matplotlib.pyplot as plt
|
8 |
import numpy as np
|
@@ -10,64 +9,54 @@ import pandas as pd
|
|
10 |
import streamlit as st
|
11 |
import torch
|
12 |
from PIL import Image
|
13 |
-
from transformers import (DetrImageProcessor,
|
14 |
-
TableTransformerForObjectDetection)
|
15 |
from vietocr.tool.config import Cfg
|
16 |
from vietocr.tool.predictor import Predictor
|
17 |
|
18 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
19 |
st.set_page_config(layout='wide')
|
20 |
-
st.title("Table Detection and Table Structure Recognition
|
21 |
st.write(
|
22 |
"Implemented by MSFT team: https://github.com/microsoft/table-transformer")
|
23 |
|
|
|
24 |
# config = Cfg.load_config_from_name('vgg_transformer')
|
25 |
-
config = Cfg.load_config_from_name('vgg_seq2seq')
|
26 |
-
config['cnn']['pretrained'] = False
|
27 |
-
config['device'] = 'cpu'
|
28 |
-
config['predictor']['beamsearch'] = False
|
29 |
-
detector = Predictor(config)
|
30 |
|
31 |
table_detection_model = TableTransformerForObjectDetection.from_pretrained(
|
32 |
"microsoft/table-transformer-detection")
|
33 |
-
|
34 |
table_recognition_model = TableTransformerForObjectDetection.from_pretrained(
|
35 |
"microsoft/table-transformer-structure-recognition")
|
36 |
|
37 |
-
|
38 |
def PIL_to_cv(pil_img):
|
39 |
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
40 |
|
41 |
-
|
42 |
def cv_to_PIL(cv_img):
|
43 |
return Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
|
44 |
|
45 |
-
|
46 |
async def pytess(cell_pil_img, threshold: float = 0.5):
|
47 |
-
text, prob = detector.predict(cell_pil_img, return_prob=True)
|
48 |
if prob < threshold:
|
49 |
return ""
|
50 |
return text.strip()
|
51 |
|
52 |
-
|
53 |
def sharpen_image(pil_img):
|
54 |
-
|
55 |
img = PIL_to_cv(pil_img)
|
56 |
sharpen_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
57 |
-
|
58 |
sharpen = cv2.filter2D(img, -1, sharpen_kernel)
|
59 |
pil_img = cv_to_PIL(sharpen)
|
60 |
return pil_img
|
61 |
|
62 |
-
|
63 |
def uniquify(seq, suffs=count(1)):
|
64 |
"""Make all the items unique by adding a suffix (1, 2, etc).
|
|
|
65 |
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
|
66 |
-
`seq` is mutable sequence of strings.
|
67 |
-
`suffs` is an optional alternative suffix iterable.
|
68 |
"""
|
69 |
not_unique = [k for k, v in Counter(seq).items() if v > 1]
|
70 |
-
|
71 |
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
|
72 |
for idx, s in enumerate(seq):
|
73 |
try:
|
@@ -76,494 +65,20 @@ def uniquify(seq, suffs=count(1)):
|
|
76 |
continue
|
77 |
else:
|
78 |
seq[idx] += suffix
|
79 |
-
|
80 |
return seq
|
81 |
|
82 |
-
|
83 |
def binarizeBlur_image(pil_img):
|
84 |
image = PIL_to_cv(pil_img)
|
85 |
thresh = cv2.threshold(image, 150, 255, cv2.THRESH_BINARY_INV)[1]
|
86 |
-
|
87 |
result = cv2.GaussianBlur(thresh, (5, 5), 0)
|
88 |
result = 255 - result
|
89 |
return cv_to_PIL(result)
|
90 |
|
91 |
-
|
92 |
def td_postprocess(pil_img):
|
93 |
'''
|
94 |
Removes gray background from tables
|
95 |
'''
|
96 |
img = PIL_to_cv(pil_img)
|
97 |
-
|
98 |
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
99 |
-
mask = cv2.inRange(hsv, (0, 0, 100),
|
100 |
-
|
101 |
-
nzmask = cv2.inRange(hsv, (0, 0, 5),
|
102 |
-
(255, 255, 255)) # (0, 0, 5), (255, 255, 255))
|
103 |
-
nzmask = cv2.erode(nzmask, np.ones((3, 3))) # (3,3)
|
104 |
-
mask = mask & nzmask
|
105 |
-
|
106 |
-
new_img = img.copy()
|
107 |
-
new_img[np.where(mask)] = 255
|
108 |
-
|
109 |
-
return cv_to_PIL(new_img)
|
110 |
-
|
111 |
-
|
112 |
-
# def super_res(pil_img):
|
113 |
-
# # requires opencv-contrib-python installed without the opencv-python
|
114 |
-
# sr = dnn_superres.DnnSuperResImpl_create()
|
115 |
-
# image = PIL_to_cv(pil_img)
|
116 |
-
# model_path = "./LapSRN_x8.pb"
|
117 |
-
# model_name = model_path.split('/')[1].split('_')[0].lower()
|
118 |
-
# model_scale = int(model_path.split('/')[1].split('_')[1].split('.')[0][1])
|
119 |
-
|
120 |
-
# sr.readModel(model_path)
|
121 |
-
# sr.setModel(model_name, model_scale)
|
122 |
-
# final_img = sr.upsample(image)
|
123 |
-
# final_img = cv_to_PIL(final_img)
|
124 |
-
|
125 |
-
# return final_img
|
126 |
-
|
127 |
-
|
128 |
-
def table_detector(image, THRESHOLD_PROBA):
|
129 |
-
'''
|
130 |
-
Table detection using DEtect-object TRansformer pre-trained on 1 million tables
|
131 |
-
|
132 |
-
'''
|
133 |
-
|
134 |
-
feature_extractor = DetrImageProcessor(do_resize=True,
|
135 |
-
size=800,
|
136 |
-
max_size=800)
|
137 |
-
encoding = feature_extractor(image, return_tensors="pt")
|
138 |
-
|
139 |
-
with torch.no_grad():
|
140 |
-
outputs = table_detection_model(**encoding)
|
141 |
-
|
142 |
-
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
143 |
-
keep = probas.max(-1).values > THRESHOLD_PROBA
|
144 |
-
|
145 |
-
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
146 |
-
postprocessed_outputs = feature_extractor.post_process(
|
147 |
-
outputs, target_sizes)
|
148 |
-
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
149 |
-
|
150 |
-
return (probas[keep], bboxes_scaled)
|
151 |
-
|
152 |
-
|
153 |
-
def table_struct_recog(image, THRESHOLD_PROBA):
|
154 |
-
'''
|
155 |
-
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
|
156 |
-
'''
|
157 |
-
|
158 |
-
feature_extractor = DetrImageProcessor(do_resize=True,
|
159 |
-
size=1000,
|
160 |
-
max_size=1000)
|
161 |
-
encoding = feature_extractor(image, return_tensors="pt")
|
162 |
-
|
163 |
-
with torch.no_grad():
|
164 |
-
outputs = table_recognition_model(**encoding)
|
165 |
-
|
166 |
-
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
167 |
-
keep = probas.max(-1).values > THRESHOLD_PROBA
|
168 |
-
|
169 |
-
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
170 |
-
postprocessed_outputs = feature_extractor.post_process(
|
171 |
-
outputs, target_sizes)
|
172 |
-
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
173 |
-
|
174 |
-
return (probas[keep], bboxes_scaled)
|
175 |
-
|
176 |
-
|
177 |
-
class TableExtractionPipeline():
|
178 |
-
|
179 |
-
colors = ["red", "blue", "green", "yellow", "orange", "violet"]
|
180 |
-
|
181 |
-
# colors = ["red", "blue", "green", "red", "red", "red"]
|
182 |
-
|
183 |
-
def add_padding(self,
|
184 |
-
pil_img,
|
185 |
-
top,
|
186 |
-
right,
|
187 |
-
bottom,
|
188 |
-
left,
|
189 |
-
color=(255, 255, 255)):
|
190 |
-
'''
|
191 |
-
Image padding as part of TSR pre-processing to prevent missing table edges
|
192 |
-
'''
|
193 |
-
width, height = pil_img.size
|
194 |
-
new_width = width + right + left
|
195 |
-
new_height = height + top + bottom
|
196 |
-
result = Image.new(pil_img.mode, (new_width, new_height), color)
|
197 |
-
result.paste(pil_img, (left, top))
|
198 |
-
return result
|
199 |
-
|
200 |
-
def plot_results_detection(self, c1, model, pil_img, prob, boxes,
|
201 |
-
delta_xmin, delta_ymin, delta_xmax, delta_ymax):
|
202 |
-
'''
|
203 |
-
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
|
204 |
-
'''
|
205 |
-
# st.write('img_obj')
|
206 |
-
# st.write(pil_img)
|
207 |
-
plt.imshow(pil_img)
|
208 |
-
ax = plt.gca()
|
209 |
-
|
210 |
-
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
211 |
-
cl = p.argmax()
|
212 |
-
xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax
|
213 |
-
ax.add_patch(
|
214 |
-
plt.Rectangle((xmin, ymin),
|
215 |
-
xmax - xmin,
|
216 |
-
ymax - ymin,
|
217 |
-
fill=False,
|
218 |
-
color='red',
|
219 |
-
linewidth=3))
|
220 |
-
text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}'
|
221 |
-
ax.text(xmin - 20,
|
222 |
-
ymin - 50,
|
223 |
-
text,
|
224 |
-
fontsize=10,
|
225 |
-
bbox=dict(facecolor='yellow', alpha=0.5))
|
226 |
-
plt.axis('off')
|
227 |
-
c1.pyplot()
|
228 |
-
|
229 |
-
def crop_tables(self, pil_img, prob, boxes, delta_xmin, delta_ymin,
|
230 |
-
delta_xmax, delta_ymax):
|
231 |
-
'''
|
232 |
-
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
|
233 |
-
'''
|
234 |
-
cropped_img_list = []
|
235 |
-
|
236 |
-
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
237 |
-
|
238 |
-
xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax
|
239 |
-
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
240 |
-
cropped_img_list.append(cropped_img)
|
241 |
-
|
242 |
-
return cropped_img_list
|
243 |
-
|
244 |
-
def generate_structure(self, c2, model, pil_img, prob, boxes,
|
245 |
-
expand_rowcol_bbox_top, expand_rowcol_bbox_bottom):
|
246 |
-
'''
|
247 |
-
Co-ordinates are adjusted here by 3 'pixels'
|
248 |
-
To plot table pillow image and the TSR bounding boxes on the table
|
249 |
-
'''
|
250 |
-
# st.write('img_obj')
|
251 |
-
# st.write(pil_img)
|
252 |
-
plt.figure(figsize=(32, 20))
|
253 |
-
plt.imshow(pil_img)
|
254 |
-
ax = plt.gca()
|
255 |
-
rows = {}
|
256 |
-
cols = {}
|
257 |
-
idx = 0
|
258 |
-
|
259 |
-
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
260 |
-
|
261 |
-
xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax
|
262 |
-
cl = p.argmax()
|
263 |
-
class_text = model.config.id2label[cl.item()]
|
264 |
-
text = f'{class_text}: {p[cl]:0.2f}'
|
265 |
-
# or (class_text == 'table column')
|
266 |
-
if (class_text
|
267 |
-
== 'table row') or (class_text
|
268 |
-
== 'table projected row header') or (
|
269 |
-
class_text == 'table column'):
|
270 |
-
ax.add_patch(
|
271 |
-
plt.Rectangle((xmin, ymin),
|
272 |
-
xmax - xmin,
|
273 |
-
ymax - ymin,
|
274 |
-
fill=False,
|
275 |
-
color=self.colors[cl.item()],
|
276 |
-
linewidth=2))
|
277 |
-
ax.text(xmin - 10,
|
278 |
-
ymin - 10,
|
279 |
-
text,
|
280 |
-
fontsize=5,
|
281 |
-
bbox=dict(facecolor='yellow', alpha=0.5))
|
282 |
-
|
283 |
-
if class_text == 'table row':
|
284 |
-
rows['table row.' +
|
285 |
-
str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax,
|
286 |
-
ymax + expand_rowcol_bbox_bottom)
|
287 |
-
if class_text == 'table column':
|
288 |
-
cols['table column.' +
|
289 |
-
str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax,
|
290 |
-
ymax + expand_rowcol_bbox_bottom)
|
291 |
-
|
292 |
-
idx += 1
|
293 |
-
|
294 |
-
plt.axis('on')
|
295 |
-
c2.pyplot()
|
296 |
-
return rows, cols
|
297 |
-
|
298 |
-
def sort_table_featuresv2(self, rows: dict, cols: dict):
|
299 |
-
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
|
300 |
-
rows_ = {
|
301 |
-
table_feature: (xmin, ymin, xmax, ymax)
|
302 |
-
for table_feature, (
|
303 |
-
xmin, ymin, xmax,
|
304 |
-
ymax) in sorted(rows.items(), key=lambda tup: tup[1][1])
|
305 |
-
}
|
306 |
-
cols_ = {
|
307 |
-
table_feature: (xmin, ymin, xmax, ymax)
|
308 |
-
for table_feature, (
|
309 |
-
xmin, ymin, xmax,
|
310 |
-
ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])
|
311 |
-
}
|
312 |
-
|
313 |
-
return rows_, cols_
|
314 |
-
|
315 |
-
def individual_table_featuresv2(self, pil_img, rows: dict, cols: dict):
|
316 |
-
|
317 |
-
for k, v in rows.items():
|
318 |
-
xmin, ymin, xmax, ymax = v
|
319 |
-
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
320 |
-
rows[k] = xmin, ymin, xmax, ymax, cropped_img
|
321 |
-
|
322 |
-
for k, v in cols.items():
|
323 |
-
xmin, ymin, xmax, ymax = v
|
324 |
-
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
325 |
-
cols[k] = xmin, ymin, xmax, ymax, cropped_img
|
326 |
-
|
327 |
-
return rows, cols
|
328 |
-
|
329 |
-
def object_to_cellsv2(self, master_row: dict, cols: dict,
|
330 |
-
expand_rowcol_bbox_top, expand_rowcol_bbox_bottom,
|
331 |
-
padd_left):
|
332 |
-
'''Removes redundant bbox for rows&columns and divides each row into cells from columns
|
333 |
-
Args:
|
334 |
-
|
335 |
-
Returns:
|
336 |
-
|
337 |
-
|
338 |
-
'''
|
339 |
-
cells_img = {}
|
340 |
-
header_idx = 0
|
341 |
-
row_idx = 0
|
342 |
-
previous_xmax_col = 0
|
343 |
-
new_cols = {}
|
344 |
-
new_master_row = {}
|
345 |
-
previous_ymin_row = 0
|
346 |
-
new_cols = cols
|
347 |
-
new_master_row = master_row
|
348 |
-
## Below 2 for loops remove redundant bounding boxes ###
|
349 |
-
# for k_col, v_col in cols.items():
|
350 |
-
# xmin_col, _, xmax_col, _, col_img = v_col
|
351 |
-
# if (np.isclose(previous_xmax_col, xmax_col, atol=5)) or (xmin_col >= xmax_col):
|
352 |
-
# print('Found a column with double bbox')
|
353 |
-
# continue
|
354 |
-
# previous_xmax_col = xmax_col
|
355 |
-
# new_cols[k_col] = v_col
|
356 |
-
|
357 |
-
# for k_row, v_row in master_row.items():
|
358 |
-
# _, ymin_row, _, ymax_row, row_img = v_row
|
359 |
-
# if (np.isclose(previous_ymin_row, ymin_row, atol=5)) or (ymin_row >= ymax_row):
|
360 |
-
# print('Found a row with double bbox')
|
361 |
-
# continue
|
362 |
-
# previous_ymin_row = ymin_row
|
363 |
-
# new_master_row[k_row] = v_row
|
364 |
-
######################################################
|
365 |
-
for k_row, v_row in new_master_row.items():
|
366 |
-
|
367 |
-
_, _, _, _, row_img = v_row
|
368 |
-
xmax, ymax = row_img.size
|
369 |
-
xa, ya, xb, yb = 0, 0, 0, ymax
|
370 |
-
row_img_list = []
|
371 |
-
# plt.imshow(row_img)
|
372 |
-
# st.pyplot()
|
373 |
-
for idx, kv in enumerate(new_cols.items()):
|
374 |
-
k_col, v_col = kv
|
375 |
-
xmin_col, _, xmax_col, _, col_img = v_col
|
376 |
-
xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left
|
377 |
-
xa = xmin_col
|
378 |
-
xb = xmax_col
|
379 |
-
if idx == 0:
|
380 |
-
xa = 0
|
381 |
-
if idx == len(new_cols) - 1:
|
382 |
-
xb = xmax
|
383 |
-
xa, ya, xb, yb = xa, ya, xb, yb
|
384 |
-
|
385 |
-
row_img_cropped = row_img.crop((xa, ya, xb, yb))
|
386 |
-
row_img_list.append(row_img_cropped)
|
387 |
-
|
388 |
-
cells_img[k_row + '.' + str(row_idx)] = row_img_list
|
389 |
-
row_idx += 1
|
390 |
-
|
391 |
-
return cells_img, len(new_cols), len(new_master_row) - 1
|
392 |
-
|
393 |
-
def clean_dataframe(self, df):
|
394 |
-
'''
|
395 |
-
Remove irrelevant symbols that appear with tesseractOCR
|
396 |
-
'''
|
397 |
-
# df.columns = [col.replace('|', '') for col in df.columns]
|
398 |
-
|
399 |
-
for col in df.columns:
|
400 |
-
|
401 |
-
df[col] = df[col].str.replace("'", '', regex=True)
|
402 |
-
df[col] = df[col].str.replace('"', '', regex=True)
|
403 |
-
df[col] = df[col].str.replace(']', '', regex=True)
|
404 |
-
df[col] = df[col].str.replace('[', '', regex=True)
|
405 |
-
df[col] = df[col].str.replace('{', '', regex=True)
|
406 |
-
df[col] = df[col].str.replace('}', '', regex=True)
|
407 |
-
return df
|
408 |
-
|
409 |
-
@st.cache
|
410 |
-
def convert_df(self, df):
|
411 |
-
return df.to_csv().encode('utf-8')
|
412 |
-
|
413 |
-
def create_dataframe(self, c3, cell_ocr_res: list, max_cols: int,
|
414 |
-
max_rows: int):
|
415 |
-
'''Create dataframe using list of cell values of the table, also checks for valid header of dataframe
|
416 |
-
Args:
|
417 |
-
cell_ocr_res: list of strings, each element representing a cell in a table
|
418 |
-
max_cols, max_rows: number of columns and rows
|
419 |
-
Returns:
|
420 |
-
dataframe : final dataframe after all pre-processing
|
421 |
-
'''
|
422 |
-
|
423 |
-
headers = cell_ocr_res[:max_cols]
|
424 |
-
new_headers = uniquify(headers,
|
425 |
-
(f' {x!s}' for x in string.ascii_lowercase))
|
426 |
-
counter = 0
|
427 |
-
|
428 |
-
cells_list = cell_ocr_res[max_cols:]
|
429 |
-
df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers)
|
430 |
-
|
431 |
-
cell_idx = 0
|
432 |
-
for nrows in range(max_rows):
|
433 |
-
for ncols in range(max_cols):
|
434 |
-
df.iat[nrows, ncols] = str(cells_list[cell_idx])
|
435 |
-
cell_idx += 1
|
436 |
-
|
437 |
-
## To check if there are duplicate headers if result of uniquify+col == col
|
438 |
-
## This check removes headers when all headers are empty or if median of header word count is less than 6
|
439 |
-
for x, col in zip(string.ascii_lowercase, new_headers):
|
440 |
-
if f' {x!s}' == col:
|
441 |
-
counter += 1
|
442 |
-
header_char_count = [len(col) for col in new_headers]
|
443 |
-
|
444 |
-
# if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6):
|
445 |
-
# st.write('woooot')
|
446 |
-
# df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase))
|
447 |
-
# df = df.iloc[1:,:]
|
448 |
-
|
449 |
-
df = self.clean_dataframe(df)
|
450 |
-
|
451 |
-
c3.dataframe(df)
|
452 |
-
csv = self.convert_df(df)
|
453 |
-
c3.download_button("Download table",
|
454 |
-
csv,
|
455 |
-
"file.csv",
|
456 |
-
"text/csv",
|
457 |
-
key='download-csv')
|
458 |
-
|
459 |
-
return df
|
460 |
-
|
461 |
-
async def start_process(self, image_path: str, TD_THRESHOLD, TSR_THRESHOLD,
|
462 |
-
OCR_THRESHOLD, padd_top, padd_left, padd_bottom,
|
463 |
-
padd_right, delta_xmin, delta_ymin, delta_xmax,
|
464 |
-
delta_ymax, expand_rowcol_bbox_top,
|
465 |
-
expand_rowcol_bbox_bottom):
|
466 |
-
'''
|
467 |
-
Initiates process of generating pandas dataframes from raw pdf-page images
|
468 |
-
|
469 |
-
'''
|
470 |
-
image = Image.open(image_path).convert("RGB")
|
471 |
-
probas, bboxes_scaled = table_detector(image,
|
472 |
-
THRESHOLD_PROBA=TD_THRESHOLD)
|
473 |
-
|
474 |
-
if bboxes_scaled.nelement() == 0:
|
475 |
-
st.write('No table found in the pdf-page image')
|
476 |
-
return ''
|
477 |
-
|
478 |
-
# try:
|
479 |
-
# st.write('Document: '+image_path.split('/')[-1])
|
480 |
-
c1, c2, c3 = st.columns((1, 1, 1))
|
481 |
-
|
482 |
-
self.plot_results_detection(c1, table_detection_model, image, probas,
|
483 |
-
bboxes_scaled, delta_xmin, delta_ymin,
|
484 |
-
delta_xmax, delta_ymax)
|
485 |
-
cropped_img_list = self.crop_tables(image, probas, bboxes_scaled,
|
486 |
-
delta_xmin, delta_ymin, delta_xmax,
|
487 |
-
delta_ymax)
|
488 |
-
|
489 |
-
for unpadded_table in cropped_img_list:
|
490 |
-
|
491 |
-
table = self.add_padding(unpadded_table, padd_top, padd_right,
|
492 |
-
padd_bottom, padd_left)
|
493 |
-
# table = super_res(table)
|
494 |
-
# table = binarizeBlur_image(table)
|
495 |
-
# table = sharpen_image(table) # Test sharpen image next
|
496 |
-
# table = td_postprocess(table)
|
497 |
-
|
498 |
-
probas, bboxes_scaled = table_struct_recog(
|
499 |
-
table, THRESHOLD_PROBA=TSR_THRESHOLD)
|
500 |
-
rows, cols = self.generate_structure(c2, table_recognition_model,
|
501 |
-
table, probas, bboxes_scaled,
|
502 |
-
expand_rowcol_bbox_top,
|
503 |
-
expand_rowcol_bbox_bottom)
|
504 |
-
# st.write(len(rows), len(cols))
|
505 |
-
rows, cols = self.sort_table_featuresv2(rows, cols)
|
506 |
-
master_row, cols = self.individual_table_featuresv2(
|
507 |
-
table, rows, cols)
|
508 |
-
|
509 |
-
cells_img, max_cols, max_rows = self.object_to_cellsv2(
|
510 |
-
master_row, cols, expand_rowcol_bbox_top,
|
511 |
-
expand_rowcol_bbox_bottom, padd_left)
|
512 |
-
|
513 |
-
sequential_cell_img_list = []
|
514 |
-
for k, img_list in cells_img.items():
|
515 |
-
for img in img_list:
|
516 |
-
# img = super_res(img)
|
517 |
-
# img = sharpen_image(img) # Test sharpen image next
|
518 |
-
# img = binarizeBlur_image(img)
|
519 |
-
# img = self.add_padding(img, 10,10,10,10)
|
520 |
-
# plt.imshow(img)
|
521 |
-
# c3.pyplot()
|
522 |
-
sequential_cell_img_list.append(
|
523 |
-
pytess(cell_pil_img=img, threshold=OCR_THRESHOLD))
|
524 |
-
|
525 |
-
cell_ocr_res = await asyncio.gather(*sequential_cell_img_list)
|
526 |
-
|
527 |
-
self.create_dataframe(c3, cell_ocr_res, max_cols, max_rows)
|
528 |
-
st.write(
|
529 |
-
'Errors in OCR is due to either quality of the image or performance of the OCR'
|
530 |
-
)
|
531 |
-
# except:
|
532 |
-
# st.write('Either incorrectly identified table or no table, to debug remove try/except')
|
533 |
-
# break
|
534 |
-
# break
|
535 |
-
|
536 |
-
|
537 |
-
if __name__ == "__main__":
|
538 |
-
|
539 |
-
img_name = st.file_uploader("Upload an image with table(s)")
|
540 |
-
st1, st2, st3 = st.columns((1, 1, 1))
|
541 |
-
TD_th = st1.slider('Table detection threshold', 0.0, 1.0, 0.8)
|
542 |
-
TSR_th = st2.slider('Table structure recognition threshold', 0.0, 1.0, 0.8)
|
543 |
-
OCR_th = st3.slider("Text Probs Threshold", 0.0, 1.0, 0.5)
|
544 |
-
|
545 |
-
st1, st2, st3, st4 = st.columns((1, 1, 1, 1))
|
546 |
-
|
547 |
-
padd_top = st1.slider('Padding top', 0, 200, 40)
|
548 |
-
padd_left = st2.slider('Padding left', 0, 200, 40)
|
549 |
-
padd_right = st3.slider('Padding right', 0, 200, 40)
|
550 |
-
padd_bottom = st4.slider('Padding bottom', 0, 200, 40)
|
551 |
-
|
552 |
-
te = TableExtractionPipeline()
|
553 |
-
# for img in image_list:
|
554 |
-
if img_name is not None:
|
555 |
-
asyncio.run(
|
556 |
-
te.start_process(img_name,
|
557 |
-
TD_THRESHOLD=TD_th,
|
558 |
-
TSR_THRESHOLD=TSR_th,
|
559 |
-
OCR_THRESHOLD=OCR_th,
|
560 |
-
padd_top=padd_top,
|
561 |
-
padd_left=padd_left,
|
562 |
-
padd_bottom=padd_bottom,
|
563 |
-
padd_right=padd_right,
|
564 |
-
delta_xmin=0,
|
565 |
-
delta_ymin=0,
|
566 |
-
delta_xmax=0,
|
567 |
-
delta_ymax=0,
|
568 |
-
expand_rowcol_bbox_top=0,
|
569 |
-
expand_rowcol_bbox_bottom=0))
|
|
|
2 |
import string
|
3 |
from collections import Counter
|
4 |
from itertools import count, tee
|
|
|
5 |
import cv2
|
6 |
import matplotlib.pyplot as plt
|
7 |
import numpy as np
|
|
|
9 |
import streamlit as st
|
10 |
import torch
|
11 |
from PIL import Image
|
12 |
+
from transformers import (DetrImageProcessor, TableTransformerForObjectDetection)
|
|
|
13 |
from vietocr.tool.config import Cfg
|
14 |
from vietocr.tool.predictor import Predictor
|
15 |
|
16 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
17 |
st.set_page_config(layout='wide')
|
18 |
+
st.title("Table Detection and Table Structure Recognition")
|
19 |
st.write(
|
20 |
"Implemented by MSFT team: https://github.com/microsoft/table-transformer")
|
21 |
|
22 |
+
# Config (optional, comment out if not using)
|
23 |
# config = Cfg.load_config_from_name('vgg_transformer')
|
24 |
+
# config = Cfg.load_config_from_name('vgg_seq2seq')
|
25 |
+
# config['cnn']['pretrained'] = False
|
26 |
+
# config['device'] = 'cpu'
|
27 |
+
# config['predictor']['beamsearch'] = False
|
28 |
+
# detector = Predictor(config)
|
29 |
|
30 |
table_detection_model = TableTransformerForObjectDetection.from_pretrained(
|
31 |
"microsoft/table-transformer-detection")
|
|
|
32 |
table_recognition_model = TableTransformerForObjectDetection.from_pretrained(
|
33 |
"microsoft/table-transformer-structure-recognition")
|
34 |
|
|
|
35 |
def PIL_to_cv(pil_img):
|
36 |
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
37 |
|
|
|
38 |
def cv_to_PIL(cv_img):
|
39 |
return Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
|
40 |
|
|
|
41 |
async def pytess(cell_pil_img, threshold: float = 0.5):
|
42 |
+
text, prob = detector.predict(cell_pil_img, return_prob=True) # Assuming detector is defined
|
43 |
if prob < threshold:
|
44 |
return ""
|
45 |
return text.strip()
|
46 |
|
|
|
47 |
def sharpen_image(pil_img):
|
|
|
48 |
img = PIL_to_cv(pil_img)
|
49 |
sharpen_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
|
|
50 |
sharpen = cv2.filter2D(img, -1, sharpen_kernel)
|
51 |
pil_img = cv_to_PIL(sharpen)
|
52 |
return pil_img
|
53 |
|
|
|
54 |
def uniquify(seq, suffs=count(1)):
|
55 |
"""Make all the items unique by adding a suffix (1, 2, etc).
|
56 |
+
|
57 |
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
|
|
|
|
|
58 |
"""
|
59 |
not_unique = [k for k, v in Counter(seq).items() if v > 1]
|
|
|
60 |
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
|
61 |
for idx, s in enumerate(seq):
|
62 |
try:
|
|
|
65 |
continue
|
66 |
else:
|
67 |
seq[idx] += suffix
|
|
|
68 |
return seq
|
69 |
|
|
|
70 |
def binarizeBlur_image(pil_img):
|
71 |
image = PIL_to_cv(pil_img)
|
72 |
thresh = cv2.threshold(image, 150, 255, cv2.THRESH_BINARY_INV)[1]
|
|
|
73 |
result = cv2.GaussianBlur(thresh, (5, 5), 0)
|
74 |
result = 255 - result
|
75 |
return cv_to_PIL(result)
|
76 |
|
|
|
77 |
def td_postprocess(pil_img):
|
78 |
'''
|
79 |
Removes gray background from tables
|
80 |
'''
|
81 |
img = PIL_to_cv(pil_img)
|
|
|
82 |
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
83 |
+
mask = cv2.inRange(hsv, (0, 0, 100), (255, 5, 255)) # (0, 0, 100), (255, 5, 255)
|
84 |
+
nzmask = cv2.inRange(hsv, (0, 0, 5), (255, 255, 255)) # (0, 0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|