rishh76 commited on
Commit
b6dd162
·
verified ·
1 Parent(s): e5bf380

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -61
app.py CHANGED
@@ -1,63 +1,39 @@
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from PyPDF2 import PdfReader
4
+ from langchain.text_splitter import CharacterTextSplitter
5
+ from langchain import vectorstores
6
+ from langchain import chains
7
+ from langchain import llms
8
+ from langchain.embeddings import HuggingFaceEmbeddings
9
  import gradio as gr
 
10
 
11
+ llm = llms.AI21(ai21_api_key='diNNQzvL40ZnBnEQkIBwNESWjtj792NG')
12
+
13
+ def pdf_qa(pdf, query):
14
+ if pdf is not None:
15
+ pdf_reader = PdfReader(pdf)
16
+ texts = ""
17
+ for page in pdf_reader.pages:
18
+ texts += page.extract_text()
19
+ text_splitter = CharacterTextSplitter(
20
+ separator="\n",
21
+ chunk_size=1000,
22
+ chunk_overlap=0
23
+ )
24
+ chunks = text_splitter.split_text(texts)
25
+ embeddings = HuggingFaceEmbeddings()
26
+ db = vectorstores.Chroma.from_texts(chunks, embeddings)
27
+ retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 10})
28
+ qa = chains.ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever)
29
+ chat_history = []
30
+ if query:
31
+ result = qa({"question": query, "chat_history": chat_history})
32
+ return result["answer"]
33
+ return "Please upload a PDF and enter a query."
34
+
35
+ pdf_input = gr.inputs.File(label="Upload your PDF", type="file", file_count="single")
36
+ query_input = gr.inputs.Textbox(label="Ask a question in PDF")
37
+ output = gr.outputs.Textbox(label="Answer")
38
+
39
+ gr.Interface(fn=pdf_qa, inputs=[pdf_input, query_input], outputs=output, title="PDF QA").launch()