File size: 10,318 Bytes
ca30234
 
 
 
 
 
 
 
 
 
 
 
b5eb0cf
 
ca30234
 
 
 
 
 
 
 
 
 
b5eb0cf
 
 
 
 
 
 
ca30234
b5eb0cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61b7bf4
 
 
 
 
 
 
 
b5eb0cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca30234
 
 
 
 
 
 
 
 
b5eb0cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
603a74b
 
 
 
b5eb0cf
 
 
 
 
 
 
603a74b
b5eb0cf
 
 
 
 
 
 
 
 
 
 
 
 
ca30234
 
 
b5eb0cf
 
 
ca30234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import cv2
import spaces
from PIL import Image
import gradio as gr
import numpy as np
import random
import base64
import requests
import json
import time



# Add a new function for text-to-image generation
def generate_garment_image(prompt):
    # This is a placeholder function. You'll need to implement actual text-to-image generation here.
    # For example, you might use a service like DALL-E, Stable Diffusion, or any other text-to-image model.
    # For now, we'll just return a placeholder image.
    placeholder_image = np.zeros((256, 256, 3), dtype=np.uint8)
    cv2.putText(placeholder_image, prompt, (10, 128), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
    return placeholder_image

def tryon(person_img, garment_prompt, seed, randomize_seed):
    post_start_time = time.time()
    if person_img is None or garment_prompt == "":
        return None, None, "Empty image or prompt"
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)


    # Generate garment image from prompt
    garment_img = generate_garment_image(garment_prompt)
    
    encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
    encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')

    url = "http://" + os.environ['tryon_url'] + "Submit"
    token = os.environ['token']
    cookie = os.environ['Cookie']
    referer = os.environ['referer']
    headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie, 'referer': referer}
    data = {
        "clothImage": encoded_garment_img,
        "humanImage": encoded_person_img,
        "seed": seed
    }
    try:
        response = requests.post(url, headers=headers, data=json.dumps(data), timeout=50)
        print("post response code", response.status_code)
        if response.status_code == 200:
            result = response.json()['result']
            status = result['status']
            if status == "success":
                uuid = result['result']
                print(uuid)
    except Exception as err:
        print(f"Error: {err}")
        raise gr.Error("Too many users, please try again later")
    post_end_time = time.time()
    print(f"post time used: {post_end_time-post_start_time}")

    get_start_time =time.time()
    time.sleep(9)
    Max_Retry = 10
    result_img = None
    for i in range(Max_Retry):
        try:
            url = "http://" + os.environ['tryon_url'] + "Query?taskId=" + uuid
            response = requests.get(url, headers=headers, timeout=15)
            print("get response code", response.status_code)
            if response.status_code == 200:
                result = response.json()['result']
                status = result['status']
                if status == "success":
                    result = base64.b64decode(result['result'])
                    result_np = np.frombuffer(result, np.uint8)
                    result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
                    result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR)
                    info = "Success"
                    break
                elif status == "error":
                    raise gr.Error("Too many users, please try again later")
            else:
                print(response.text)
                info = "URL error, pleace contact the admin"
        except requests.exceptions.ReadTimeout:
            print("timeout")
            info = "Too many users, please try again later"
        except Exception as err:
            print(f"Error: {err}")
        time.sleep(1)
    get_end_time = time.time()
    print(f"get time used: {get_end_time-get_start_time}")

    return result_img, seed, info


def start_tryon(person_img, garment_prompt, seed, randomize_seed):
    start_time = time.time()
    if person_img is None or garment_prompt == "":
        return None, None, "Empty image or prompt"
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Generate garment image from prompt
    garment_img = generate_garment_image(garment_prompt)
    
    encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
    encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')

    url = "http://" + os.environ['tryon_url']
    token = os.environ['token']
    cookie = os.environ['Cookie']
    referer = os.environ['referer']

    headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie, 'referer': referer}
    data = {
        "clothImage": encoded_garment_img,
        "humanImage": encoded_person_img,
        "seed": seed
    }

    result_img = None
    try:
        session = requests.Session()
        response = session.post(url, headers=headers, data=json.dumps(data), timeout=60)
        print("response code", response.status_code)
        if response.status_code == 200:
            result = response.json()['result']
            status = result['status']
            if status == "success":
                result = base64.b64decode(result['result'])
                result_np = np.frombuffer(result, np.uint8)
                result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
                result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR)
                info = "Success"
            else:
                info = "Try again latter"
        else:
            print(response.text)
            info = "URL error, pleace contact the admin"
    except requests.exceptions.ReadTimeout:
        print("timeout")
        info = "Too many users, please try again later"
        raise gr.Error("Too many users, please try again later")
    except Exception as err:
        print(f"其他错误: {err}")
        info = "Error, pleace contact the admin"
    end_time = time.time()
    print(f"time used: {end_time-start_time}")

    return result_img, seed, info

MAX_SEED = 999999




example_path = os.path.join(os.path.dirname(__file__), 'assets')

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

css="""
#col-left {
    margin: 0 auto;
    max-width: 430px;
}
#col-mid {
    margin: 0 auto;
    max-width: 430px;
}
#col-right {
    margin: 0 auto;
    max-width: 430px;
}
#col-showcase {
    margin: 0 auto;
    max-width: 1100px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

with gr.Blocks(css=css) as Tryon:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id = "col-left"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 1.  Upload a person image ⬇️
                </div>
            </div>
            """)
        with gr.Column(elem_id = "col-mid"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 2. Enter a garment description ⬇️
                </div>
            </div>
            """)
        with gr.Column(elem_id = "col-right"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 3. Press "Run" to get try-on results
                </div>
            </div>
            """)
    with gr.Row():
        with gr.Column(elem_id = "col-left"):
            imgs = gr.Image(label="Person image", sources='upload', type="numpy")
            example = gr.Examples(
                inputs=imgs,
                examples_per_page=12,
                examples=human_list_path
            )
        with gr.Column(elem_id = "col-mid"):
            garm_prompt = gr.Textbox(label="Garment description", placeholder="Enter a description of the garment...")
            example_prompts = gr.Examples(
                inputs=garm_prompt,
                examples=["A red t-shirt", "Blue jeans", "A floral summer dress", "A black leather jacket"]
            )
        with gr.Column(elem_id = "col-right"):
            image_out = gr.Image(label="Result", show_share_button=False)
            with gr.Row():
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Random seed", value=True)
            with gr.Row():
                seed_used = gr.Number(label="Seed used")
                result_info = gr.Text(label="Response")
            test_button = gr.Button(value="Run", elem_id="button")

    test_button.click(fn=tryon, inputs=[imgs, garm_prompt, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon', concurrency_limit=40)

    with gr.Column(elem_id = "col-showcase"):
        gr.HTML("""
        <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
            <div> </div>
            <br>
            <div>
            Virtual try-on examples in pairs of person images and garment descriptions
            </div>
        </div>
        """)
        show_case = gr.Examples(
            examples=[
                ["assets/examples/model2.png", "A blue t-shirt", "assets/examples/result2.png"],
                ["assets/examples/model3.png", "A red dress", "assets/examples/result3.png"],
                ["assets/examples/model1.png", "A black suit", "assets/examples/result1.png"],
            ],
            inputs=[imgs, garm_prompt, image_out],
            label=None
        )

Tryon.launch()