Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,41 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import random
|
6 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
def tryon(person_img, garment_prompt, seed, randomize_seed):
|
9 |
-
post_start_time = time.time()
|
10 |
-
|
11 |
-
if person_img is None or garment_prompt.strip() == "":
|
12 |
-
return None, None, "Empty image or prompt"
|
13 |
-
|
14 |
if randomize_seed:
|
15 |
seed = random.randint(0, MAX_SEED)
|
16 |
-
|
17 |
-
# Create a copy of the person image to overlay text
|
18 |
-
result_img = person_img.copy()
|
19 |
-
|
20 |
-
# Convert the image to OpenCV format (if needed)
|
21 |
-
if len(result_img.shape) == 2: # Convert grayscale to RGB
|
22 |
-
result_img = cv2.cvtColor(result_img, cv2.COLOR_GRAY2RGB)
|
23 |
-
|
24 |
-
# Set text position and properties
|
25 |
-
text_position = (10, 30)
|
26 |
-
font = cv2.FONT_HERSHEY_SIMPLEX
|
27 |
-
font_scale = 1
|
28 |
-
font_color = (0, 255, 0) # Green color for the text
|
29 |
-
thickness = 2
|
30 |
|
31 |
-
#
|
32 |
-
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
# Return the resulting image, used seed, and success message
|
38 |
return result_img, seed, "Success"
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
|
46 |
|
47 |
css = """
|
48 |
#col-left {
|
@@ -61,90 +54,32 @@ css = """
|
|
61 |
margin: 0 auto;
|
62 |
max-width: 1100px;
|
63 |
}
|
64 |
-
#button {
|
65 |
-
color: blue;
|
66 |
-
}
|
67 |
"""
|
68 |
|
69 |
-
def load_description(fp):
|
70 |
-
with open(fp, 'r', encoding='utf-8') as f:
|
71 |
-
content = f.read()
|
72 |
-
return content
|
73 |
-
|
74 |
-
|
75 |
with gr.Blocks(css=css) as Tryon:
|
76 |
-
gr.HTML(
|
77 |
-
|
78 |
-
with gr.Column(elem_id="col-left"):
|
79 |
-
gr.HTML("""
|
80 |
-
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
81 |
-
<div>
|
82 |
-
Step 1. Upload a person image ⬇️
|
83 |
-
</div>
|
84 |
-
</div>
|
85 |
-
""")
|
86 |
-
with gr.Column(elem_id="col-mid"):
|
87 |
-
gr.HTML("""
|
88 |
-
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
89 |
-
<div>
|
90 |
-
Step 2. Enter a text prompt for the garment ⬇️
|
91 |
-
</div>
|
92 |
-
</div>
|
93 |
-
""")
|
94 |
-
with gr.Column(elem_id="col-right"):
|
95 |
-
gr.HTML("""
|
96 |
-
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
97 |
-
<div>
|
98 |
-
Step 3. Press “Run” to get try-on results
|
99 |
-
</div>
|
100 |
-
</div>
|
101 |
-
""")
|
102 |
with gr.Row():
|
103 |
with gr.Column(elem_id="col-left"):
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
examples_per_page=12,
|
108 |
-
examples=human_list_path
|
109 |
-
)
|
110 |
with gr.Column(elem_id="col-mid"):
|
111 |
-
|
|
|
|
|
112 |
with gr.Column(elem_id="col-right"):
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
result_info = gr.Text(label="Response")
|
126 |
-
test_button = gr.Button(value="Run", elem_id="button")
|
127 |
-
|
128 |
-
test_button.click(fn=tryon, inputs=[imgs, garment_prompt, seed, randomize_seed], outputs=[image_out, seed_used, result_info], concurrency_limit=40)
|
129 |
-
|
130 |
-
with gr.Column(elem_id="col-showcase"):
|
131 |
-
gr.HTML("""
|
132 |
-
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
133 |
-
<div> </div>
|
134 |
-
<br>
|
135 |
-
<div>
|
136 |
-
Virtual try-on examples in pairs of person and garment images
|
137 |
-
</div>
|
138 |
-
</div>
|
139 |
-
""")
|
140 |
-
show_case = gr.Examples(
|
141 |
-
examples=[
|
142 |
-
["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"],
|
143 |
-
["assets/examples/model3.png", "assets/examples/garment3.png", "assets/examples/result3.png"],
|
144 |
-
["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"],
|
145 |
-
],
|
146 |
-
inputs=[imgs, garment_prompt, image_out],
|
147 |
-
label=None
|
148 |
-
)
|
149 |
|
150 |
Tryon.launch()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import torch
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
|
7 |
+
# Load the Stable Diffusion model for text-based garment generation
|
8 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
9 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
10 |
+
pipe = pipe.to("cuda") # Use GPU for faster inference
|
11 |
+
|
12 |
+
MAX_SEED = 999999
|
13 |
+
|
14 |
+
def generate_garment(person_img, cloth_description, seed, randomize_seed):
|
15 |
+
if person_img is None or cloth_description is None or cloth_description.strip() == "":
|
16 |
+
return None, None, "Invalid input"
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
if randomize_seed:
|
19 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Generate garment image from the text description
|
22 |
+
torch.manual_seed(seed)
|
23 |
+
garment_img = pipe(cloth_description).images[0]
|
24 |
|
25 |
+
# Combine the generated garment with the person's image
|
26 |
+
result_img = combine_images(person_img, garment_img)
|
27 |
|
|
|
28 |
return result_img, seed, "Success"
|
29 |
|
30 |
+
def combine_images(person_img, garment_img):
|
31 |
+
person_img = np.array(person_img)
|
32 |
+
garment_img = np.array(garment_img.resize((person_img.shape[1], person_img.shape[0])))
|
33 |
|
34 |
+
# Simple overlay of garment on the person image
|
35 |
+
# Further improvement may require segmentation/masking
|
36 |
+
result_img = np.where(garment_img[:, :, 3:] > 0, garment_img[:, :, :3], person_img)
|
37 |
|
38 |
+
return result_img
|
|
|
39 |
|
40 |
css = """
|
41 |
#col-left {
|
|
|
54 |
margin: 0 auto;
|
55 |
max-width: 1100px;
|
56 |
}
|
|
|
|
|
|
|
57 |
"""
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
with gr.Blocks(css=css) as Tryon:
|
60 |
+
gr.HTML("<h1>Virtual Try-On with Text-based Garment Generation</h1>")
|
61 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
with gr.Row():
|
63 |
with gr.Column(elem_id="col-left"):
|
64 |
+
gr.HTML("<h3>Step 1: Upload a person image ⬇️</h3>")
|
65 |
+
person_img = gr.Image(label="Person Image", source='upload', type="numpy")
|
66 |
+
|
|
|
|
|
|
|
67 |
with gr.Column(elem_id="col-mid"):
|
68 |
+
gr.HTML("<h3>Step 2: Describe the garment ⬇️</h3>")
|
69 |
+
cloth_description = gr.Textbox(label="Garment Description", placeholder="e.g., red dress with floral pattern")
|
70 |
+
|
71 |
with gr.Column(elem_id="col-right"):
|
72 |
+
gr.HTML("<h3>Step 3: Generate Try-On Image ⬇️</h3>")
|
73 |
+
result_img = gr.Image(label="Result", show_share_button=False)
|
74 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
75 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
76 |
+
seed_used = gr.Number(label="Seed Used", interactive=False)
|
77 |
+
result_info = gr.Text(label="Status", interactive=False)
|
78 |
+
|
79 |
+
generate_button = gr.Button(value="Run")
|
80 |
+
|
81 |
+
generate_button.click(fn=generate_garment,
|
82 |
+
inputs=[person_img, cloth_description, seed, randomize_seed],
|
83 |
+
outputs=[result_img, seed_used, result_info])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
Tryon.launch()
|