rishikasharma commited on
Commit
0ea45f7
·
verified ·
1 Parent(s): c4f3c0a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -46
app.py CHANGED
@@ -1,51 +1,10 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
- from datasets import load_dataset
4
- from transformers import AutoTokenizer, AutoModelForCausalLM
5
- from transformers import Trainer, TrainingArguments
6
 
7
- model_name = "HuggingFaceH4/zephyr-7b-beta"
8
- tokenizer = AutoTokenizer.from_pretrained(model_name)
9
- model = AutoModelForCausalLM.from_pretrained(model_name)
10
-
11
- dataset = load_dataset("json", data_files="data.json", split = "train")
12
-
13
- # Tokenize the dataset
14
- def preprocess_function(examples):
15
- inputs = [example['input'] for example in examples]
16
- targets = [examples['output'] for example in examples]
17
- model_inputs = tokenizer(inputs, padding=True, truncation=True)
18
- labels = tokenizer(targets, padding=True, truncation=True).input_ids
19
- model_inputs['labels'] = labels
20
- return model_inputs
21
-
22
- tokenized_datasets = dataset.map(preprocess_function, batched = True)
23
-
24
- training_args = TrainingArguments(
25
- output_dir = "./results",
26
- evaluation_strategy = "epoch",
27
- learning_rate = 2e-5,
28
- per_device_train_batch_size = 3,
29
- weight_decay = 0.01,
30
- )
31
-
32
- trainer = Trainer(
33
- model = model,
34
- args = training_args,
35
- train_dataset = tokenized_datasets["train"],
36
- eval_dataset = tokenized_datasets["validation"],
37
- )
38
-
39
- # Start fine-tuning
40
- trainer.train()
41
-
42
- trainer.evaluate()
43
-
44
- model.save_pretrained("./fine_tuned_model")
45
- tokenizer.save_pretrained("./fine_tuned_model")
46
-
47
-
48
- client = InferenceClient("./fine_tuned_model")
49
 
50
 
51
  def respond(
@@ -80,6 +39,10 @@ def respond(
80
  response += token
81
  yield response
82
 
 
 
 
 
83
  demo = gr.ChatInterface(
84
  respond,
85
  additional_inputs=[
@@ -98,4 +61,4 @@ demo = gr.ChatInterface(
98
 
99
 
100
  if __name__ == "__main__":
101
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
 
10
  def respond(
 
39
  response += token
40
  yield response
41
 
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
 
61
 
62
 
63
  if __name__ == "__main__":
64
+ demo.launch()