Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
3 |
|
4 |
-
""
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def respond(
|
@@ -39,10 +80,6 @@ def respond(
|
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
@@ -61,4 +98,4 @@ demo = gr.ChatInterface(
|
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from datasets import load_dataset
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from transformers import Trainer, TrainingArguments
|
6 |
|
7 |
+
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
|
11 |
+
dataset = load_dataset("json", data_files="data.json", split = "train")
|
12 |
+
|
13 |
+
# Tokenize the dataset
|
14 |
+
def preprocess_function(examples):
|
15 |
+
inputs = [example['input'] for example in examples]
|
16 |
+
targets = [examples['output'] for example in examples]
|
17 |
+
model_inputs = tokenizer(inputs, padding=True, truncation=True)
|
18 |
+
labels = tokenizer(targets, padding=True, truncation=True).input_ids
|
19 |
+
model_inputs['labels'] = labels
|
20 |
+
return model_inputs
|
21 |
+
|
22 |
+
tokenized_datasets = dataset.map(preprocess_function, batched = True)
|
23 |
+
|
24 |
+
training_args = TrainingArguments(
|
25 |
+
output_dir = "./results",
|
26 |
+
evaluation_strategy = "epoch",
|
27 |
+
learning_rate = 2e-5,
|
28 |
+
per_device_train_batch_size = 3,
|
29 |
+
weight_decay = 0.01,
|
30 |
+
)
|
31 |
+
|
32 |
+
trainer = Trainer(
|
33 |
+
model = model,
|
34 |
+
args = training_args,
|
35 |
+
train_dataset = tokenized_datasets["train"],
|
36 |
+
eval_dataset = tokenized_datasets["validation"],
|
37 |
+
)
|
38 |
+
|
39 |
+
# Start fine-tuning
|
40 |
+
trainer.train()
|
41 |
+
|
42 |
+
trainer.evaluate()
|
43 |
+
|
44 |
+
model.save_pretrained("./fine_tuned_model")
|
45 |
+
tokenizer.save_pretrained("./fine_tuned_model")
|
46 |
+
|
47 |
+
|
48 |
+
client = InferenceClient("./fine_tuned_model")
|
49 |
|
50 |
|
51 |
def respond(
|
|
|
80 |
response += token
|
81 |
yield response
|
82 |
|
|
|
|
|
|
|
|
|
83 |
demo = gr.ChatInterface(
|
84 |
respond,
|
85 |
additional_inputs=[
|
|
|
98 |
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
+
demo.launch()
|