File size: 5,314 Bytes
220b2e5
35a46cc
 
220b2e5
 
 
 
35a46cc
 
 
 
 
 
 
 
 
 
 
 
 
 
818e952
35a46cc
 
efe9046
 
28d160a
0f88c21
 
 
35a46cc
d1074e8
 
 
 
 
35a46cc
 
 
220b2e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from huggingface_hub import InferenceClient
import gradio as gr

client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

# Function to handle dynamic content display
def show_info(section):
    if section == "Experiences":
        return "Details about Rishiraj's experiences..."
    elif section == "Communities":
        return "Details about communities Rishiraj is involved in..."
    elif section == "Recommendations":
        return "Rishiraj's recommendations..."
    elif section == "Conferences":
        return "Conferences attended by Rishiraj..."
    else:
        return "Select a section to display information."

# Creating Gradio Interface
with gr.Blocks() as app:
    with gr.Row():
        with gr.Column():
            gr.Markdown("# Hi 👋, I'm Rishiraj Acharya (ঋষিরাজ আচার্য্য)")
            gr.Markdown("## Google Developer Expert in ML ✨ | Hugging Face Fellow 🤗 | GSoC '22 at TensorFlow 👨🏻‍🔬 | TFUG Kolkata Organizer 🎙️ | Kaggle Master 🧠 | Dynopii ML Engineer 👨🏻‍💻")
            gr.Markdown("### I work with natural language understanding, machine translation, named entity recognition, question answering, topic segmentation, and automatic speech recognition. My work typically relies on very large quantities of data and innovative methods in deep learning to tackle user challenges around the world — in languages from around the world. My areas of work include Natural Language Engineering, Language Modeling, Text-to-Speech Software Engineering, Speech Frameworks Engineering, Data Science, and Research.")
            gr.Markdown("📫 How to reach me **[[email protected]](mailto:[email protected])**")
            gr.Markdown("⚡ Fun fact **I’m a national level Chess player, a swimming champion and I can lecture for hours on the outer reaches of space and the craziness of astrophysics.**")
            gr.HTML(value='<a href="https://twitter.com/rishirajacharya" target="blank"><img align="center" src="https://raw.githubusercontent.com/rahuldkjain/github-profile-readme-generator/master/src/images/icons/Social/twitter.svg" alt="rishirajacharya" height="30" width="40" /></a>')
        with gr.Column():
            gr.Image("profile.png")
    
    with gr.Row():
        section_dropdown = gr.Dropdown(["Experiences", "Communities", "Recommendations", "Conferences"], label="Select Information to Display")
        info_display = gr.Textbox(label="Information")
    
    section_dropdown.change(show_info, inputs=section_dropdown, outputs=info_display)

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(
    prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=1048,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

examples=[["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
          ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
         ]

llm = gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=True, show_share_button=True, show_copy_button=True, likeable=True, layout="bubble"),
    additional_inputs=additional_inputs,
    title="Hi 👋, I'm Rishiraj Acharya (ঋষিরাজ আচার্য্য)",
    examples=examples,
    concurrency_limit=20,
)

demo = gr.TabbedInterface([app, llm], ["About", "Chat"])
demo.launch()